ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10349
  4. Cited By
Quantum-chemical insights from interpretable atomistic neural networks

Quantum-chemical insights from interpretable atomistic neural networks

27 June 2018
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
    AI4CE
ArXivPDFHTML

Papers citing "Quantum-chemical insights from interpretable atomistic neural networks"

7 / 7 papers shown
Title
Disentangled Explanations of Neural Network Predictions by Finding
  Relevant Subspaces
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
43
17
0
30 Dec 2022
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
17
257
0
10 Jul 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
21
215
0
05 Jun 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
38
82
0
17 Mar 2020
Unifying machine learning and quantum chemistry -- a deep neural network
  for molecular wavefunctions
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
29
381
0
24 Jun 2019
Learning representations of molecules and materials with atomistic
  neural networks
Learning representations of molecules and materials with atomistic neural networks
Kristof T. Schütt
A. Tkatchenko
K. Müller
NAI
14
13
0
11 Dec 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
1