Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.10758
Cited By
A Benchmark for Interpretability Methods in Deep Neural Networks
28 June 2018
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Benchmark for Interpretability Methods in Deep Neural Networks"
50 / 108 papers shown
Title
Attribution-based Explanations that Provide Recourse Cannot be Robust
H. Fokkema
R. D. Heide
T. Erven
FAtt
42
18
0
31 May 2022
Faithful Explanations for Deep Graph Models
Zifan Wang
Yuhang Yao
Chaoran Zhang
Han Zhang
Youjie Kang
Carlee Joe-Wong
Matt Fredrikson
Anupam Datta
FAtt
14
2
0
24 May 2022
Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection
Esma Balkir
I. Nejadgholi
Kathleen C. Fraser
S. Kiritchenko
FAtt
33
27
0
06 May 2022
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Jonathan Brophy
Zayd Hammoudeh
Daniel Lowd
TDI
16
22
0
30 Apr 2022
Maximum Entropy Baseline for Integrated Gradients
Hanxiao Tan
FAtt
14
4
0
12 Apr 2022
Analyzing the Effects of Handling Data Imbalance on Learned Features from Medical Images by Looking Into the Models
Ashkan Khakzar
Yawei Li
Yang Zhang
Mirac Sanisoglu
Seong Tae Kim
Mina Rezaei
Bernd Bischl
Nassir Navab
15
0
0
04 Apr 2022
Label-Free Explainability for Unsupervised Models
Jonathan Crabbé
M. Schaar
FAtt
MILM
19
22
0
03 Mar 2022
MUC-driven Feature Importance Measurement and Adversarial Analysis for Random Forest
Shucen Ma
Jianqi Shi
Yanhong Huang
Shengchao Qin
Zhe Hou
AAML
16
4
0
25 Feb 2022
Evaluating Feature Attribution Methods in the Image Domain
Arne Gevaert
Axel-Jan Rousseau
Thijs Becker
D. Valkenborg
T. D. Bie
Yvan Saeys
FAtt
6
22
0
22 Feb 2022
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
Thomas Fel
Mélanie Ducoffe
David Vigouroux
Rémi Cadène
Mikael Capelle
C. Nicodeme
Thomas Serre
AAML
18
41
0
15 Feb 2022
Multi-Modal Knowledge Graph Construction and Application: A Survey
Xiangru Zhu
Zhixu Li
Xiaodan Wang
Xueyao Jiang
Penglei Sun
Xuwu Wang
Yanghua Xiao
N. Yuan
26
154
0
11 Feb 2022
The impact of feature importance methods on the interpretation of defect classifiers
Gopi Krishnan Rajbahadur
Shaowei Wang
Yasutaka Kamei
Ahmed E. Hassan
FAtt
6
79
0
04 Feb 2022
When less is more: Simplifying inputs aids neural network understanding
R. Schirrmeister
Rosanne Liu
Sara Hooker
T. Ball
19
5
0
14 Jan 2022
Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations
Siddhant Arora
Danish Pruthi
Norman M. Sadeh
William W. Cohen
Zachary Chase Lipton
Graham Neubig
FAtt
30
38
0
17 Dec 2021
UNIREX: A Unified Learning Framework for Language Model Rationale Extraction
Aaron Chan
Maziar Sanjabi
Lambert Mathias
L Tan
Shaoliang Nie
Xiaochang Peng
Xiang Ren
Hamed Firooz
36
41
0
16 Dec 2021
Evaluating saliency methods on artificial data with different background types
Céline Budding
Fabian Eitel
K. Ritter
Stefan Haufe
XAI
FAtt
MedIm
11
5
0
09 Dec 2021
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
58
114
0
06 Dec 2021
Improving Deep Learning Interpretability by Saliency Guided Training
Aya Abdelsalam Ismail
H. C. Bravo
S. Feizi
FAtt
16
79
0
29 Nov 2021
Human Attention in Fine-grained Classification
Yao Rong
Wenjia Xu
Zeynep Akata
Enkelejda Kasneci
26
35
0
02 Nov 2021
Double Trouble: How to not explain a text classifier's decisions using counterfactuals synthesized by masked language models?
Thang M. Pham
Trung H. Bui
Long Mai
Anh Totti Nguyen
21
7
0
22 Oct 2021
Coalitional Bayesian Autoencoders -- Towards explainable unsupervised deep learning
Bang Xiang Yong
Alexandra Brintrup
19
6
0
19 Oct 2021
Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining
Andreas Madsen
Nicholas Meade
Vaibhav Adlakha
Siva Reddy
96
35
0
15 Oct 2021
Deep Synoptic Monte Carlo Planning in Reconnaissance Blind Chess
Gregory Clark
25
9
0
05 Oct 2021
Longitudinal Distance: Towards Accountable Instance Attribution
Rosina O. Weber
Prateek Goel
S. Amiri
G. Simpson
11
0
0
23 Aug 2021
Temporal Dependencies in Feature Importance for Time Series Predictions
Kin Kwan Leung
Clayton Rooke
Jonathan Smith
S. Zuberi
M. Volkovs
OOD
AI4TS
20
24
0
29 Jul 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
26
65
0
23 Jun 2021
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
11
20
0
13 Jun 2021
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation
Wei Zhang
Ziming Huang
Yada Zhu
Guangnan Ye
Xiaodong Cui
Fan Zhang
23
17
0
09 Jun 2021
The Out-of-Distribution Problem in Explainability and Search Methods for Feature Importance Explanations
Peter Hase
Harry Xie
Mohit Bansal
OODD
LRM
FAtt
18
91
0
01 Jun 2021
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Thorben Funke
Megha Khosla
Mandeep Rathee
Avishek Anand
FAtt
21
38
0
18 May 2021
Do Feature Attribution Methods Correctly Attribute Features?
Yilun Zhou
Serena Booth
Marco Tulio Ribeiro
J. Shah
FAtt
XAI
22
132
0
27 Apr 2021
Improving Attribution Methods by Learning Submodular Functions
Piyushi Manupriya
Tarun Ram Menta
S. Jagarlapudi
V. Balasubramanian
TDI
14
6
0
19 Apr 2021
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features
Ashkan Khakzar
Yang Zhang
W. Mansour
Yuezhi Cai
Yawei Li
Yucheng Zhang
Seong Tae Kim
Nassir Navab
FAtt
36
16
0
01 Apr 2021
Deep learning on fundus images detects glaucoma beyond the optic disc
Ruben Hemelings
B. Elen
J. Barbosa-Breda
Matthew B. Blaschko
P. Boever
Ingeborg Stalmans
MedIm
22
59
0
22 Mar 2021
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Valerie Chen
Jeffrey Li
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
24
29
0
10 Mar 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
82
70
0
02 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
18
57
0
25 Feb 2021
MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset
Chuizheng Meng
Loc Trinh
Nan Xu
Yan Liu
18
30
0
12 Feb 2021
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
32
169
0
13 Jan 2021
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
22
241
0
21 Nov 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
34
7
0
23 Oct 2020
Feature Importance Ranking for Deep Learning
Maksymilian Wojtas
Ke Chen
132
116
0
18 Oct 2020
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Mingli Song
Dacheng Tao
Xinchao Wang
FAtt
30
17
0
14 Oct 2020
Trustworthy Convolutional Neural Networks: A Gradient Penalized-based Approach
Nicholas F Halliwell
Freddy Lecue
FAtt
11
9
0
29 Sep 2020
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI) Interpretability through Neural Backdoors
Yi-Shan Lin
Wen-Chuan Lee
Z. Berkay Celik
XAI
24
93
0
22 Sep 2020
Debiasing Concept-based Explanations with Causal Analysis
M. T. Bahadori
David Heckerman
FAtt
CML
6
38
0
22 Jul 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
17
73
0
24 Jun 2020
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei-Yue Wang
AAML
36
18
0
09 Jun 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
29
370
0
30 Apr 2020
Dendrite Net: A White-Box Module for Classification, Regression, and System Identification
Gang Liu
Junchang Wang
20
60
0
08 Apr 2020
Previous
1
2
3
Next