Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.10758
Cited By
A Benchmark for Interpretability Methods in Deep Neural Networks
28 June 2018
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Benchmark for Interpretability Methods in Deep Neural Networks"
8 / 108 papers shown
Title
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
36
82
0
17 Mar 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
149
0
16 Mar 2020
Measuring and improving the quality of visual explanations
Agnieszka Grabska-Barwiñska
XAI
FAtt
6
3
0
14 Mar 2020
Selectivity considered harmful: evaluating the causal impact of class selectivity in DNNs
Matthew L. Leavitt
Ari S. Morcos
50
33
0
03 Mar 2020
Identifying Critical Neurons in ANN Architectures using Mixed Integer Programming
M. Elaraby
Guy Wolf
Margarida Carvalho
26
5
0
17 Feb 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
20
143
0
10 Feb 2020
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P. Schramowski
Wolfgang Stammer
Stefano Teso
Anna Brugger
Xiaoting Shao
Hans-Georg Luigs
Anne-Katrin Mahlein
Kristian Kersting
13
207
0
15 Jan 2020
Revisiting the Importance of Individual Units in CNNs via Ablation
Bolei Zhou
Yiyou Sun
David Bau
Antonio Torralba
FAtt
54
116
0
07 Jun 2018
Previous
1
2
3