Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.11544
Cited By
v1
v2 (latest)
Nonparametric learning from Bayesian models with randomized objective functions
29 June 2018
Simon Lyddon
S. Walker
C. C. Holmes
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Nonparametric learning from Bayesian models with randomized objective functions"
24 / 24 papers shown
Title
Decision Making under Model Misspecification: DRO with Robust Bayesian Ambiguity Sets
Charita Dellaporta
Patrick O'Hara
Theodoros Damoulas
115
0
0
06 May 2025
A Deep Bayesian Nonparametric Framework for Robust Mutual Information Estimation
Forough Fazeliasl
Michael Minyi Zhang
Bei Jiang
Linglong Kong
83
0
0
13 Mar 2025
Predictive Coresets
Bernardo Flores
100
0
0
08 Feb 2025
Generative vs. Discriminative modeling under the lens of uncertainty quantification
Elouan Argouarc'h
François Desbouvries
Eric Barat
Eiji Kawasaki
UQCV
68
0
0
13 Jun 2024
Posterior Uncertainty Quantification in Neural Networks using Data Augmentation
Luhuan Wu
Sinead Williamson
UQCV
89
7
0
18 Mar 2024
Enhancing Transfer Learning with Flexible Nonparametric Posterior Sampling
Hyungi Lee
G. Nam
Edwin Fong
Juho Lee
BDL
75
6
0
12 Mar 2024
Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization
Nicola Bariletto
Nhat Ho
OOD
111
1
0
28 Jan 2024
Reproducible Parameter Inference Using Bagged Posteriors
Jonathan H. Huggins
Jeffrey W. Miller
UQCV
121
1
0
03 Nov 2023
On the Properties and Estimation of Pointwise Mutual Information Profiles
Paweł Czyż
Frederic Grabowski
Julia E. Vogt
N. Beerenwinkel
Alexander Marx
83
3
0
16 Oct 2023
Robustness of Bayesian ordinal response model against outliers via divergence approach
Tomotaka Momozaki
Tomoyuki Nakagawa
54
1
0
12 May 2023
Robustifying likelihoods by optimistically re-weighting data
Miheer Dewaskar
Christopher Tosh
Jeremias Knoblauch
David B. Dunson
89
6
0
19 Mar 2023
A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial Networks
Forough Fazeli Asl
M. Zhang
Lizhen Lin
77
1
0
05 Mar 2023
Bayesian Quantification with Black-Box Estimators
Albert Ziegler
Paweł Czyż
UQCV
52
0
0
17 Feb 2023
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
82
45
0
09 Feb 2022
Asymptotics of cut distributions and robust modular inference using Posterior Bootstrap
E. Pompe
Pierre E. Jacob
80
14
0
21 Oct 2021
Nonparametric posterior learning for emission tomography with multimodal data
F. Goncharov
Éric Barat
T. Dautremer
MedIm
53
0
0
29 Jul 2021
Martingale posterior distributions
Edwin Fong
Chris Holmes
S. Walker
UQCV
180
51
0
29 Mar 2021
Introducing prior information in Weighted Likelihood Bootstrap with applications to model misspecification
E. Pompe
117
9
0
26 Mar 2021
Bayesian Bootstrap Spike-and-Slab LASSO
Lizhen Nie
Veronika Rockova
184
32
0
29 Nov 2020
Robust Bayesian Inference for Discrete Outcomes with the Total Variation Distance
Jeremias Knoblauch
Lara Vomfell
72
7
0
26 Oct 2020
A general Bayesian bootstrap for censored data based on the beta-Stacy process
Andrea Arfe
P. Muliere
125
2
0
10 Feb 2020
Robust Inference and Model Criticism Using Bagged Posteriors
Jonathan H. Huggins
Jeffrey W. Miller
142
15
0
15 Dec 2019
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap
Edwin Fong
Simon Lyddon
Chris Holmes
184
36
0
08 Feb 2019
Machine learning and AI research for Patient Benefit: 20 Critical Questions on Transparency, Replicability, Ethics and Effectiveness
Sebastian J. Vollmer
Bilal A. Mateen
G. Bohner
Franz J. Király
Rayid Ghani
...
Karel G. M. Moons
Gary S. Collins
J. Ioannidis
Chris Holmes
H. Hemingway
124
39
0
21 Dec 2018
1