Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.00028
Cited By
v1
v2 (latest)
Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints
29 June 2018
Andrew Cotter
Maya R. Gupta
Heinrich Jiang
Nathan Srebro
Karthik Sridharan
S. Wang
Blake E. Woodworth
Seungil You
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints"
37 / 37 papers shown
Title
Near-Optimal Solutions of Constrained Learning Problems
Juan Elenter
Luiz F. O. Chamon
Alejandro Ribeiro
65
6
0
18 Mar 2024
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
227
1
0
13 Mar 2024
Explanation-Guided Fair Federated Learning for Transparent 6G RAN Slicing
Swastika Roy
Hatim Chergui
C. Verikoukis
FedML
58
3
0
18 Jul 2023
Towards clinical AI fairness: A translational perspective
Mingxuan Liu
Yilin Ning
Salinelat Teixayavong
M. Mertens
Jie Xu
...
Ravi Chandran Narrendar
Fei Wang
Leo Anthony Celi
M. Ong
Nan Liu
FaML
59
0
0
26 Apr 2023
Calibrated Data-Dependent Constraints with Exact Satisfaction Guarantees
Songkai Xue
Yuekai Sun
Mikhail Yurochkin
FaML
59
0
0
15 Jan 2023
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Harsh Rangwani
Sumukh K Aithal
Mayank Mishra
R. Venkatesh Babu
75
31
0
28 Dec 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
105
177
0
14 Jul 2022
Active Learning with Safety Constraints
Romain Camilleri
Andrew Wagenmaker
Jamie Morgenstern
Lalit P. Jain
Kevin Jamieson
66
14
0
22 Jun 2022
A Sociotechnical View of Algorithmic Fairness
Mateusz Dolata
Stefan Feuerriegel
Gerhard Schwabe
FaML
76
100
0
27 Sep 2021
Evaluating Debiasing Techniques for Intersectional Biases
Shivashankar Subramanian
Xudong Han
Timothy Baldwin
Trevor Cohn
Lea Frermann
157
50
0
21 Sep 2021
Measuring Generalization with Optimal Transport
Ching-Yao Chuang
Youssef Mroueh
Kristjan Greenewald
Antonio Torralba
Stefanie Jegelka
OT
90
27
0
07 Jun 2021
Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning
Yuyan Wang
Xuezhi Wang
Alex Beutel
Flavien Prost
Jilin Chen
Ed H. Chi
FaML
61
48
0
04 Jun 2021
An Empirical Framework for Domain Generalization in Clinical Settings
Haoran Zhang
Natalie Dullerud
Laleh Seyyed-Kalantari
Q. Morris
Shalmali Joshi
Marzyeh Ghassemi
OOD
AI4CE
125
61
0
20 Mar 2021
Fair Mixup: Fairness via Interpolation
Ching-Yao Chuang
Youssef Mroueh
79
140
0
11 Mar 2021
Constrained Learning with Non-Convex Losses
Luiz F. O. Chamon
Santiago Paternain
Miguel Calvo-Fullana
Alejandro Ribeiro
91
38
0
08 Mar 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
309
500
0
31 Dec 2020
Does enforcing fairness mitigate biases caused by subpopulation shift?
Subha Maity
Debarghya Mukherjee
Mikhail Yurochkin
Yuekai Sun
151
24
0
06 Nov 2020
Debiasing classifiers: is reality at variance with expectation?
Ashrya Agrawal
Florian Pfisterer
B. Bischl
Francois Buet-Golfouse
Srijan Sood
Jiahao Chen
Sameena Shah
Sebastian J. Vollmer
CML
FaML
36
18
0
04 Nov 2020
Deep F-measure Maximization for End-to-End Speech Understanding
Leda Sari
M. Hasegawa-Johnson
FedML
21
0
0
08 Aug 2020
An Empirical Characterization of Fair Machine Learning For Clinical Risk Prediction
Stephen Pfohl
Agata Foryciarz
N. Shah
FaML
116
113
0
20 Jul 2020
A Theory of Multiple-Source Adaptation with Limited Target Labeled Data
Yishay Mansour
M. Mohri
Jae Hun Ro
A. Suresh
Ke Wu
113
28
0
19 Jul 2020
Fairness with Overlapping Groups
Forest Yang
Moustapha Cissé
Oluwasanmi Koyejo
FaML
61
22
0
24 Jun 2020
Competitive Mirror Descent
F. Schafer
Anima Anandkumar
H. Owhadi
66
13
0
17 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
64
40
0
26 May 2020
Ensuring Fairness under Prior Probability Shifts
Arpita Biswas
Suvam Mukherjee
OOD
61
34
0
06 May 2020
Fair Learning with Private Demographic Data
Hussein Mozannar
Mesrob I. Ohannessian
Nathan Srebro
90
76
0
26 Feb 2020
FR-Train: A Mutual Information-Based Approach to Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
85
79
0
24 Feb 2020
Lagrangian Duality for Constrained Deep Learning
Ferdinando Fioretto
Pascal Van Hentenryck
Terrence W.K. Mak
Cuong Tran
Federico Baldo
M. Lombardi
PINN
61
84
0
26 Jan 2020
Practical Compositional Fairness: Understanding Fairness in Multi-Component Recommender Systems
Xuezhi Wang
Nithum Thain
Anu Sinha
Flavien Prost
Ed H. Chi
Jilin Chen
Alex Beutel
FaML
CoGe
27
1
0
05 Nov 2019
Pairwise Fairness for Ranking and Regression
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
S. Wang
89
115
0
12 Jun 2019
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
FaML
222
87
0
12 Jun 2019
Fairness for Robust Log Loss Classification
Ashkan Rezaei
Rizal Fathony
Omid Memarrast
Brian Ziebart
FaML
58
8
0
10 Mar 2019
Noise-tolerant fair classification
A. Lamy
Ziyuan Zhong
A. Menon
Nakul Verma
NoLa
96
77
0
30 Jan 2019
Identifying and Correcting Label Bias in Machine Learning
Heinrich Jiang
Ofir Nachum
FaML
104
284
0
15 Jan 2019
Uniform Convergence of Gradients for Non-Convex Learning and Optimization
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
82
68
0
25 Oct 2018
Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals
Andrew Cotter
Heinrich Jiang
S. Wang
Taman Narayan
Maya R. Gupta
Seungil You
Karthik Sridharan
90
158
0
11 Sep 2018
Two-Player Games for Efficient Non-Convex Constrained Optimization
Andrew Cotter
Heinrich Jiang
Karthik Sridharan
99
118
0
17 Apr 2018
1