Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1807.00906
Cited By
Uncertainty in the Variational Information Bottleneck
2 July 2018
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Uncertainty in the Variational Information Bottleneck"
50 / 69 papers shown
Title
Information-Theoretic Reward Modeling for Stable RLHF: Detecting and Mitigating Reward Hacking
Yuchun Miao
Liang Ding
Sen Zhang
Rong Bao
L. Zhang
Dacheng Tao
172
0
0
15 Oct 2025
Label Smoothing is a Pragmatic Information Bottleneck
Sota Kudo
111
0
0
12 Aug 2025
Handling Out-of-Distribution Data: A Survey
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2025
L. Tamang
Mohamed Reda Bouadjenek
Richard Dazeley
S. Aryal
OOD
OODD
274
4
0
25 Jul 2025
Exploring bidirectional bounds for minimax-training of Energy-based models
International Journal of Computer Vision (IJCV), 2025
Cong Geng
Jia Wang
Li Chen
Zhiyong Gao
J. Frellsen
Søren Hauberg
266
0
0
05 Jun 2025
Epistemic Artificial Intelligence is Essential for Machine Learning Models to Truly 'Know When They Do Not Know'
Shireen Kudukkil Manchingal
Andrew Bradley
Julian F. P. Kooij
Keivan K1 Shariatmadar
Neil Yorke-Smith
Fabio Cuzzolin
529
1
0
08 May 2025
Mitigating Hallucinations in Large Vision-Language Models by Adaptively Constraining Information Flow
AAAI Conference on Artificial Intelligence (AAAI), 2025
Jiaqi Bai
Hongcheng Guo
Zhongyuan Peng
Zhiqiang Wang
Zhiyu Li
Mingze Li
Zhihong Tian
VLM
208
6
0
28 Feb 2025
Forte : Finding Outliers with Representation Typicality Estimation
International Conference on Learning Representations (ICLR), 2024
Debargha Ganguly
Warren Morningstar
A. Yu
Vipin Chaudhary
OODD
232
4
0
02 Oct 2024
Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection
Yewen Li
Chaojie Wang
Xiaobo Xia
Xu He
Ruyi An
Dong Li
Tongliang Liu
Bo An
Xinrun Wang
OODD
208
0
0
05 Sep 2024
A Rate-Distortion View of Uncertainty Quantification
Ifigeneia Apostolopoulou
Benjamin Eysenbach
Frank Nielsen
Artur Dubrawski
UQCV
385
3
0
16 Jun 2024
Weakly-Supervised Residual Evidential Learning for Multi-Instance Uncertainty Estimation
Pei Liu
Luping Ji
EDL
326
6
0
07 May 2024
Cell Variational Information Bottleneck Network
Zhonghua Zhai
Chen Ju
Jinsong Lan
Shuai Xiao
253
0
0
22 Mar 2024
Masked Gamma-SSL: Learning Uncertainty Estimation via Masked Image Modeling
David S. W. Williams
Matthew Gadd
Paul Newman
Daniele De Martini
UQCV
107
1
0
27 Feb 2024
Discriminant Distance-Aware Representation on Deterministic Uncertainty Quantification Methods
Jiaxin Zhang
Kamalika Das
Kumar Sricharan
UQCV
153
2
0
20 Feb 2024
Flexible Variational Information Bottleneck: Achieving Diverse Compression with a Single Training
Sota Kudo
N. Ono
Shigehiko Kanaya
Ming Huang
160
3
0
02 Feb 2024
Planning to Go Out-of-Distribution in Offline-to-Online Reinforcement Learning
Trevor A. McInroe
Adam Jelley
Stefano V. Albrecht
Amos Storkey
OffRL
OnRL
251
7
0
09 Oct 2023
IB-UQ: Information bottleneck based uncertainty quantification for neural function regression and neural operator learning
Journal of Computational Physics (JCP), 2023
Ling Guo
Hao Wu
Wenwen Zhou
Yan Wang
Tao Zhou
UQCV
292
21
0
07 Feb 2023
Quantifying Model Uncertainty for Semantic Segmentation using Operators in the RKHS
Rishabh Singh
José C. Príncipe
UQCV
159
3
0
03 Nov 2022
Latent Discriminant deterministic Uncertainty
European Conference on Computer Vision (ECCV), 2022
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
194
18
0
20 Jul 2022
GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot Learning
IEEE transactions on multimedia (IEEE TMM), 2022
Zhi Chen
Yadan Luo
Sen Wang
Jingjing Li
Zi Huang
216
18
0
05 Jul 2022
InfoAT: Improving Adversarial Training Using the Information Bottleneck Principle
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022
Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
AAML
117
20
0
23 Jun 2022
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Neural Information Processing Systems (NeurIPS), 2022
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
210
15
0
20 May 2022
Bayesian Imitation Learning for End-to-End Mobile Manipulation
International Conference on Machine Learning (ICML), 2022
Yuqing Du
Daniel Ho
Alexander A. Alemi
Eric Jang
Mohi Khansari
SSL
127
13
0
15 Feb 2022
From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven Learning in Artificial Intelligence Tasks
Chenyu Sun
Hangwei Qian
Chunyan Miao
192
13
0
20 Jan 2022
Competing Mutual Information Constraints with Stochastic Competition-based Activations for Learning Diversified Representations
AAAI Conference on Artificial Intelligence (AAAI), 2022
Konstantinos P. Panousis
A. Antoniadis
S. Chatzis
245
5
0
10 Jan 2022
The Exponentially Tilted Gaussian Prior for Variational Autoencoders
Griffin Floto
Stefan Kremer
Mihai Nica
DRL
127
1
0
30 Nov 2021
Bounds all around: training energy-based models with bidirectional bounds
Neural Information Processing Systems (NeurIPS), 2021
Cong Geng
Jia Wang
Zhiyong Gao
J. Frellsen
Søren Hauberg
325
17
0
01 Nov 2021
Information Theoretic Structured Generative Modeling
Bo Hu
Shujian Yu
José C. Príncipe
SyDa
DRL
145
0
0
12 Oct 2021
On the Out-of-distribution Generalization of Probabilistic Image Modelling
Mingtian Zhang
Andi Zhang
Jingyu Sun
OODD
354
49
0
04 Sep 2021
DOI: Divergence-based Out-of-Distribution Indicators via Deep Generative Models
Wenxiao Chen
Xiaohui Nie
Mingliang Li
Dan Pei
OODD
117
1
0
12 Aug 2021
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
359
69
0
01 Jul 2021
Rectangular Flows for Manifold Learning
Neural Information Processing Systems (NeurIPS), 2021
M. Volkovs
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
DRL
297
51
0
02 Jun 2021
Deconvolutional Density Network: Modeling Free-Form Conditional Distributions
AAAI Conference on Artificial Intelligence (AAAI), 2021
Bing Chen
Mazharul Islam
Jisuo Gao
Lin Wang
BDL
CML
237
8
0
29 May 2021
Self-Paced Uncertainty Estimation for One-shot Person Re-Identification
Yulin Zhang
Bo Ma
Longyao Liu
Xin Yi
143
2
0
19 Apr 2021
Unsupervised Class-Incremental Learning Through Confusion
Shivam Khare
Kun Cao
James M. Rehg
SSL
CLL
198
7
0
09 Apr 2021
Hierarchical VAEs Know What They Don't Know
International Conference on Machine Learning (ICML), 2021
Jakob Drachmann Havtorn
J. Frellsen
Søren Hauberg
Lars Maaløe
DRL
585
82
0
16 Feb 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
International Conference on Learning Representations (ICLR), 2021
Alexandre Ramé
Matthieu Cord
FedML
223
58
0
14 Jan 2021
Disentangled Information Bottleneck
AAAI Conference on Artificial Intelligence (AAAI), 2020
Ziqi Pan
Li Niu
Jianfu Zhang
Liqing Zhang
182
47
0
14 Dec 2020
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
Xin Huang
A. Khetan
Milan Cvitkovic
Zohar Karnin
ViT
LMTD
372
613
0
11 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
461
24
0
05 Dec 2020
Interpretable Signed Link Prediction with Signed Infomax Hyperbolic Graph
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2020
Yadan Luo
Zi Huang
Hongxu Chen
Yang Yang
Mahsa Baktash
184
13
0
25 Nov 2020
Bottleneck Problems: Information and Estimation-Theoretic View
S. Asoodeh
Flavio du Pin Calmon
160
18
0
12 Nov 2020
Further Analysis of Outlier Detection with Deep Generative Models
Neural Information Processing Systems (NeurIPS), 2020
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
189
41
0
25 Oct 2020
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OOD
AAML
404
182
0
15 Oct 2020
An Algorithm for Out-Of-Distribution Attack to Neural Network Encoder
Liang Liang
Linhai Ma
Linchen Qian
Jiasong Chen
OODD
238
2
0
17 Sep 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
276
2
0
03 Sep 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Neural Networks (NN), 2020
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
258
59
0
16 Jul 2020
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
268
93
0
16 Jun 2020
Revisiting Explicit Regularization in Neural Networks for Well-Calibrated Predictive Uncertainty
Taejong Joo
U. Chung
BDL
UQCV
226
0
0
11 Jun 2020
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
217
32
0
09 Jun 2020
Mutual Information Gradient Estimation for Representation Learning
International Conference on Learning Representations (ICLR), 2020
Liangjiang Wen
Yiji Zhou
Lirong He
Mingyuan Zhou
Zenglin Xu
DRL
SSL
277
34
0
03 May 2020
1
2
Next