ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01065
  4. Cited By
When Gaussian Process Meets Big Data: A Review of Scalable GPs

When Gaussian Process Meets Big Data: A Review of Scalable GPs

3 July 2018
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
    GP
ArXivPDFHTML

Papers citing "When Gaussian Process Meets Big Data: A Review of Scalable GPs"

33 / 83 papers shown
Title
Revisiting Memory Efficient Kernel Approximation: An Indefinite Learning
  Perspective
Revisiting Memory Efficient Kernel Approximation: An Indefinite Learning Perspective
Simon Heilig
Maximilian Münch
Frank-Michael Schleif
31
1
0
18 Dec 2021
BoGraph: Structured Bayesian Optimization From Logs for Expensive
  Systems with Many Parameters
BoGraph: Structured Bayesian Optimization From Logs for Expensive Systems with Many Parameters
Sami Alabed
Eiko Yoneki
17
7
0
16 Dec 2021
Comparing Machine Learning and Interpolation Methods for Loop-Level
  Calculations
Comparing Machine Learning and Interpolation Methods for Loop-Level Calculations
Ibrahim Chahrour
J. Wells
10
12
0
29 Nov 2021
Non-separable Spatio-temporal Graph Kernels via SPDEs
Non-separable Spatio-temporal Graph Kernels via SPDEs
A. Nikitin
S. T. John
Arno Solin
Samuel Kaski
AI4TS
33
17
0
16 Nov 2021
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
54
17
0
22 Sep 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks
  with Sparse Gaussian Processes
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
50
21
0
20 Sep 2021
Scalable Multi-Task Gaussian Processes with Neural Embedding of
  Coregionalization
Scalable Multi-Task Gaussian Processes with Neural Embedding of Coregionalization
Haitao Liu
Jiaqi Ding
Xinyu Xie
Xiaomo Jiang
Yusong Zhao
Xiaofang Wang
BDL
34
14
0
20 Sep 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with
  Categorical Factors
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
38
25
0
26 Jun 2021
Deep Gaussian Processes: A Survey
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
29
19
0
21 Jun 2021
Adaptive machine learning for protein engineering
Adaptive machine learning for protein engineering
B. Hie
Kevin Kaichuang Yang
32
80
0
10 Jun 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent
  Input for Dynamic Systems
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
47
2
0
03 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
26
6
0
24 May 2021
Lightweight Distributed Gaussian Process Regression for Online Machine
  Learning
Lightweight Distributed Gaussian Process Regression for Online Machine Learning
Zhenyuan Yuan
Minghui Zhu
21
4
0
11 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
148
17
0
23 Apr 2021
Data-Driven Robust Barrier Functions for Safe, Long-Term Operation
Data-Driven Robust Barrier Functions for Safe, Long-Term Operation
Y. Emam
Paul Glotfelter
S. Wilson
Gennaro Notomista
M. Egerstedt
13
25
0
15 Apr 2021
ARXON: A Framework for Approximate Communication over Photonic
  Networks-on-Chip
ARXON: A Framework for Approximate Communication over Photonic Networks-on-Chip
Febin P. Sunny
Asif Mirza
Ishan G. Thakkar
Mahdi Nikdast
S. Pasricha
16
17
0
16 Mar 2021
Differentiable sampling of molecular geometries with uncertainty-based
  adversarial attacks
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
31
60
0
27 Jan 2021
Transferring model structure in Bayesian transfer learning for Gaussian
  process regression
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
24
11
0
18 Jan 2021
Twin Neural Network Regression
Twin Neural Network Regression
S. J. Wetzel
Kevin Ryczko
R. Melko
Isaac Tamblyn
UQCV
28
11
0
29 Dec 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
21
26
0
22 Oct 2020
Lateral Force Prediction using Gaussian Process Regression for
  Intelligent Tire Systems
Lateral Force Prediction using Gaussian Process Regression for Intelligent Tire Systems
B. Barbosa
N. Xu
H. Askari
A. Khajepour
6
26
0
25 Sep 2020
Planning from Images with Deep Latent Gaussian Process Dynamics
Planning from Images with Deep Latent Gaussian Process Dynamics
Nathanael Bosch
Jan Achterhold
Laura Leal-Taixé
J. Stückler
20
1
0
07 May 2020
Scaled Vecchia approximation for fast computer-model emulation
Scaled Vecchia approximation for fast computer-model emulation
Matthias Katzfuss
J. Guinness
E. Lawrence
19
40
0
01 May 2020
Gaussian Process Learning-based Probabilistic Optimal Power Flow
Gaussian Process Learning-based Probabilistic Optimal Power Flow
Parikshit Pareek
H. Nguyen
16
35
0
16 Apr 2020
The Renyi Gaussian Process: Towards Improved Generalization
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
107
3
0
15 Oct 2019
Large-scale Environmental Data Science with ExaGeoStatR
Large-scale Environmental Data Science with ExaGeoStatR
Sameh Abdulah
Yuxiao Li
JIAN-PENG Cao
Hatem Ltaief
David E. Keyes
M. Genton
Ying Sun
25
10
0
23 Jul 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
15
226
0
19 Mar 2019
GPdoemd: a Python package for design of experiments for model
  discrimination
GPdoemd: a Python package for design of experiments for model discrimination
Simon Olofsson
Lukas Hebing
Sebastian Niedenführ
M. Deisenroth
Ruth Misener
27
18
0
05 Oct 2018
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
72
171
0
08 Jul 2017
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
Local Gaussian process approximation for large computer experiments
Local Gaussian process approximation for large computer experiments
R. Gramacy
D. Apley
127
392
0
02 Mar 2013
Variable noise and dimensionality reduction for sparse Gaussian
  processes
Variable noise and dimensionality reduction for sparse Gaussian processes
Edward Snelson
Zoubin Ghahramani
87
79
0
27 Jun 2012
A Framework for Evaluating Approximation Methods for Gaussian Process
  Regression
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
Previous
12