Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01069
Cited By
Adversarial Robustness Toolbox v1.0.0
3 July 2018
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
Martin Wistuba
Valentina Zantedeschi
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Robustness Toolbox v1.0.0"
35 / 85 papers shown
Title
An Empirical Study of Accuracy, Fairness, Explainability, Distributional Robustness, and Adversarial Robustness
Moninder Singh
Gevorg Ghalachyan
Kush R. Varshney
R. Bryant
24
9
0
29 Sep 2021
MUTEN: Boosting Gradient-Based Adversarial Attacks via Mutant-Based Ensembles
Yuejun Guo
Qiang Hu
Maxime Cordy
Michail Papadakis
Yves Le Traon
AAML
32
2
0
27 Sep 2021
Automated Robustness with Adversarial Training as a Post-Processing Step
Ambrish Rawat
M. Sinn
Beat Buesser
AAML
19
0
0
06 Sep 2021
SEC4SR: A Security Analysis Platform for Speaker Recognition
Guangke Chen
Zhe Zhao
Fu Song
Sen Chen
Lingling Fan
Yang Liu
AAML
32
12
0
04 Sep 2021
The Threat of Offensive AI to Organizations
Yisroel Mirsky
Ambra Demontis
J. Kotak
Ram Shankar
Deng Gelei
Liu Yang
Xinming Zhang
Wenke Lee
Yuval Elovici
Battista Biggio
38
81
0
30 Jun 2021
Stochastic-Shield: A Probabilistic Approach Towards Training-Free Adversarial Defense in Quantized CNNs
Lorena Qendro
Sangwon Ha
R. D. Jong
Partha P. Maji
AAML
FedML
MQ
21
7
0
13 May 2021
Performance Evaluation of Adversarial Attacks: Discrepancies and Solutions
Jing Wu
Mingyi Zhou
Ce Zhu
Yipeng Liu
Mehrtash Harandi
Li Li
AAML
57
10
0
22 Apr 2021
Rethinking Image-Scaling Attacks: The Interplay Between Vulnerabilities in Machine Learning Systems
Yue Gao
Ilia Shumailov
Kassem Fawaz
AAML
34
10
0
18 Apr 2021
Multiplicative Reweighting for Robust Neural Network Optimization
Noga Bar
Tomer Koren
Raja Giryes
OOD
NoLa
18
9
0
24 Feb 2021
Cortical Features for Defense Against Adversarial Audio Attacks
Ilya Kavalerov
Frank Zheng
W. Czaja
Ramalingam Chellappa
AAML
27
0
0
30 Jan 2021
Adversarial Attacks for Tabular Data: Application to Fraud Detection and Imbalanced Data
F. Cartella
Orlando Anunciação
Yuki Funabiki
D. Yamaguchi
Toru Akishita
Olivier Elshocht
AAML
65
71
0
20 Jan 2021
DeepSweep: An Evaluation Framework for Mitigating DNN Backdoor Attacks using Data Augmentation
Han Qiu
Yi Zeng
Shangwei Guo
Tianwei Zhang
Meikang Qiu
B. Thuraisingham
AAML
24
191
0
13 Dec 2020
Interpretable Graph Capsule Networks for Object Recognition
Jindong Gu
Volker Tresp
FAtt
19
36
0
03 Dec 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
681
0
19 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
21
22
0
15 Oct 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
157
0
08 Sep 2020
Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review
Yansong Gao
Bao Gia Doan
Zhi-Li Zhang
Siqi Ma
Jiliang Zhang
Anmin Fu
Surya Nepal
Hyoungshick Kim
AAML
36
221
0
21 Jul 2020
A Survey on Security Attacks and Defense Techniques for Connected and Autonomous Vehicles
M. Pham
Kaiqi Xiong
25
138
0
16 Jul 2020
Evaluation of Adversarial Training on Different Types of Neural Networks in Deep Learning-based IDSs
Rana Abou-Khamis
Ashraf Matrawy
AAML
41
46
0
08 Jul 2020
Tricking Adversarial Attacks To Fail
Blerta Lindqvist
AAML
16
0
0
08 Jun 2020
Adversarial Attacks on Classifiers for Eye-based User Modelling
Inken Hagestedt
Michael Backes
Andreas Bulling
AAML
24
6
0
01 Jun 2020
Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks
Hokuto Hirano
K. Koga
Kazuhiro Takemoto
AAML
27
47
0
22 May 2020
Utilizing Network Properties to Detect Erroneous Inputs
Matt Gorbett
Nathaniel Blanchard
AAML
23
6
0
28 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
19
0
0
04 Feb 2020
Adversarial Machine Learning -- Industry Perspectives
Ramnath Kumar
Magnus Nyström
J. Lambert
Andrew Marshall
Mario Goertzel
Andi Comissoneru
Matt Swann
Sharon Xia
AAML
SILM
29
232
0
04 Feb 2020
Advbox: a toolbox to generate adversarial examples that fool neural networks
Dou Goodman
Xin Hao
Yang Wang
Yuesheng Wu
Junfeng Xiong
Huan Zhang
AAML
15
53
0
13 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
31
36
0
26 Dec 2019
Deep Neural Network Fingerprinting by Conferrable Adversarial Examples
Nils Lukas
Yuxuan Zhang
Florian Kerschbaum
MLAU
FedML
AAML
39
145
0
02 Dec 2019
Simple iterative method for generating targeted universal adversarial perturbations
Hokuto Hirano
Kazuhiro Takemoto
AAML
33
30
0
15 Nov 2019
When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures
Gil Fidel
Ron Bitton
A. Shabtai
FAtt
GAN
21
119
0
08 Sep 2019
Improved Adversarial Robustness by Reducing Open Space Risk via Tent Activations
Andras Rozsa
Terrance E. Boult
AAML
30
18
0
07 Aug 2019
Optimization Problems for Machine Learning: A Survey
Claudio Gambella
Bissan Ghaddar
Joe Naoum-Sawaya
AI4CE
37
178
0
16 Jan 2019
Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering
Bryant Chen
Wilka Carvalho
Wenjie Li
Heiko Ludwig
Benjamin Edwards
Chengyao Chen
Ziqiang Cao
Biplav Srivastava
AAML
29
782
0
09 Nov 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
303
3,115
0
04 Nov 2016
Previous
1
2