ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01774
  4. Cited By
BOHB: Robust and Efficient Hyperparameter Optimization at Scale

BOHB: Robust and Efficient Hyperparameter Optimization at Scale

4 July 2018
Stefan Falkner
Aaron Klein
Frank Hutter
    BDL
ArXivPDFHTML

Papers citing "BOHB: Robust and Efficient Hyperparameter Optimization at Scale"

37 / 187 papers shown
Title
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Sheheryar Zaidi
Arber Zela
T. Elsken
Chris Holmes
Frank Hutter
Yee Whye Teh
OOD
UQCV
18
71
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
41
100
0
15 Jun 2020
Optimal Transport Kernels for Sequential and Parallel Neural
  Architecture Search
Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search
Vu-Linh Nguyen
Tam Le
M. Yamada
Michael A. Osborne
AI4TS
26
37
0
13 Jun 2020
Does Unsupervised Architecture Representation Learning Help Neural
  Architecture Search?
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan
Yu Zheng
Wei Ao
Xiao Zeng
Mi Zhang
SSL
AI4CE
30
99
0
12 Jun 2020
Few-shot Neural Architecture Search
Few-shot Neural Architecture Search
Yiyang Zhao
Linnan Wang
Yuandong Tian
Rodrigo Fonseca
Tian Guo
23
90
0
11 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
18
36
0
08 Jun 2020
Sherpa: Robust Hyperparameter Optimization for Machine Learning
Sherpa: Robust Hyperparameter Optimization for Machine Learning
L. Hertel
Julian Collado
Peter Sadowski
J. Ott
Pierre Baldi
86
103
0
08 May 2020
Initial Design Strategies and their Effects on Sequential Model-Based
  Optimization
Initial Design Strategies and their Effects on Sequential Model-Based Optimization
Jakob Bossek
Carola Doerr
P. Kerschke
14
26
0
30 Mar 2020
Machine Learning in Python: Main developments and technology trends in
  data science, machine learning, and artificial intelligence
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
483
0
12 Feb 2020
Provably Efficient Online Hyperparameter Optimization with
  Population-Based Bandits
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
75
83
0
06 Feb 2020
Optimized Generic Feature Learning for Few-shot Classification across
  Domains
Optimized Generic Feature Learning for Few-shot Classification across Domains
Tonmoy Saikia
Thomas Brox
Cordelia Schmid
VLM
30
48
0
22 Jan 2020
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
  Search
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search
Xuanyi Dong
Yi Yang
43
695
0
02 Jan 2020
Meta-Learning of Neural Architectures for Few-Shot Learning
Meta-Learning of Neural Architectures for Few-Shot Learning
T. Elsken
B. Staffler
J. H. Metzen
Frank Hutter
20
136
0
25 Nov 2019
FLAML: A Fast and Lightweight AutoML Library
FLAML: A Fast and Lightweight AutoML Library
Chi Wang
Qingyun Wu
Markus Weimer
Erkang Zhu
30
196
0
12 Nov 2019
BANANAS: Bayesian Optimization with Neural Architectures for Neural
  Architecture Search
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Colin White
W. Neiswanger
Yash Savani
BDL
42
313
0
25 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
ReNAS:Relativistic Evaluation of Neural Architecture Search
ReNAS:Relativistic Evaluation of Neural Architecture Search
Yixing Xu
Yunhe Wang
Avishkar Bhoopchand
Christopher Mattern
A. Grabska-Barwinska
Chunjing Xu
Chang Xu
25
82
0
30 Sep 2019
Towards modular and programmable architecture search
Towards modular and programmable architecture search
Renato M. P. Negrinho
Darshan Patil
Nghia T. Le
Daniel C. Ferreira
Matthew R. Gormley
Geoffrey J. Gordon
24
26
0
30 Sep 2019
Learning search spaces for Bayesian optimization: Another view of
  hyperparameter transfer learning
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
27
96
0
27 Sep 2019
Does BERT Make Any Sense? Interpretable Word Sense Disambiguation with
  Contextualized Embeddings
Does BERT Make Any Sense? Interpretable Word Sense Disambiguation with Contextualized Embeddings
Gregor Wiedemann
Steffen Remus
Avi Chawla
Chris Biemann
27
175
0
23 Sep 2019
Understanding and Robustifying Differentiable Architecture Search
Understanding and Robustifying Differentiable Architecture Search
Arber Zela
T. Elsken
Tonmoy Saikia
Yassine Marrakchi
Thomas Brox
Frank Hutter
OOD
AAML
66
366
0
20 Sep 2019
Towards Assessing the Impact of Bayesian Optimization's Own
  Hyperparameters
Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters
Marius Lindauer
Matthias Feurer
Katharina Eggensperger
André Biedenkapp
Frank Hutter
20
18
0
19 Aug 2019
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
X. Chu
20
1,420
0
02 Aug 2019
Techniques for Automated Machine Learning
Techniques for Automated Machine Learning
Yi-Wei Chen
Qingquan Song
Xia Hu
18
48
0
21 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
Hyp-RL : Hyperparameter Optimization by Reinforcement Learning
Hyp-RL : Hyperparameter Optimization by Reinforcement Learning
H. Jomaa
Josif Grabocka
Lars Schmidt-Thieme
25
65
0
27 Jun 2019
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained
  Microcontrollers
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers
Igor Fedorov
Ryan P. Adams
Matthew Mattina
P. Whatmough
13
164
0
28 May 2019
The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective
  System Development
The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective System Development
Micah J. Smith
Carles Sala Cladellas
James Max Kanter
K. Veeramachaneni
24
49
0
22 May 2019
Tabular Benchmarks for Joint Architecture and Hyperparameter
  Optimization
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Aaron Klein
Frank Hutter
15
91
0
13 May 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
25
86
0
26 Apr 2019
Reducing The Search Space For Hyperparameter Optimization Using Group
  Sparsity
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
C. Hegde
19
11
0
24 Apr 2019
NAS-Bench-101: Towards Reproducible Neural Architecture Search
NAS-Bench-101: Towards Reproducible Neural Architecture Search
Chris Ying
Aaron Klein
Esteban Real
Eric Christiansen
Kevin Patrick Murphy
Frank Hutter
10
672
0
25 Feb 2019
Random Search and Reproducibility for Neural Architecture Search
Random Search and Reproducibility for Neural Architecture Search
Liam Li
Ameet Talwalkar
OOD
33
717
0
20 Feb 2019
A System for Massively Parallel Hyperparameter Tuning
A System for Massively Parallel Hyperparameter Tuning
Liam Li
Kevin G. Jamieson
Afshin Rostamizadeh
Ekaterina Gonina
Moritz Hardt
Benjamin Recht
Ameet Talwalkar
24
372
0
13 Oct 2018
CHOPT : Automated Hyperparameter Optimization Framework for Cloud-Based
  Machine Learning Platforms
CHOPT : Automated Hyperparameter Optimization Framework for Cloud-Based Machine Learning Platforms
Jingwoong Kim
Minkyu Kim
Heungseok Park
Ernar Kusdavletov
Dongjun Lee
A. Kim
Ji-Hoon Kim
Jung-Woo Ha
Nako Sung
28
14
0
08 Oct 2018
Maximizing acquisition functions for Bayesian optimization
Maximizing acquisition functions for Bayesian optimization
James T. Wilson
Frank Hutter
M. Deisenroth
46
240
0
25 May 2018
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,327
0
05 Nov 2016
Previous
1234