Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.04587
Cited By
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
12 July 2018
Sergey Bartunov
Adam Santoro
Blake A. Richards
Luke Marris
Geoffrey E. Hinton
Timothy Lillicrap
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures"
50 / 133 papers shown
Title
Can Local Representation Alignment RNNs Solve Temporal Tasks?
Nikolay Manchev
Luis C. Garcia-Peraza-Herrera
AI4TS
41
0
0
18 Apr 2025
Training Large Neural Networks With Low-Dimensional Error Feedback
Maher Hanut
Jonathan Kadmon
45
1
0
27 Feb 2025
Sign-Symmetry Learning Rules are Robust Fine-Tuners
Aymene Berriche
Mehdi Zakaria Adjal
Riyadh Baghdadi
AAML
52
0
0
09 Feb 2025
Replacement Learning: Training Vision Tasks with Fewer Learnable Parameters
Yuming Zhang
Peizhe Wang
Shouxin Zhang
Dongzhi Guan
Jiabin Liu
Junhao Su
38
0
0
02 Oct 2024
Counter-Current Learning: A Biologically Plausible Dual Network Approach for Deep Learning
Chia-Hsiang Kao
Bharath Hariharan
48
1
0
30 Sep 2024
Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI
Suayb S. Arslan
31
2
0
24 Sep 2024
Correlations Are Ruining Your Gradient Descent
Nasir Ahmad
52
2
0
15 Jul 2024
HPFF: Hierarchical Locally Supervised Learning with Patch Feature Fusion
Junhao Su
Chenghao He
Feiyu Zhu
Xiaojie Xu
Dongzhi Guan
Chenyang Si
56
2
0
08 Jul 2024
MLAAN: Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary Network
Yuming Zhang
Shouxin Zhang
Peizhe Wang
Feiyu Zhu
Dongzhi Guan
Junhao Su
Jiabin Liu
Changpeng Cai
33
2
0
24 Jun 2024
Towards Biologically Plausible Computing: A Comprehensive Comparison
Changze Lv
Yufei Gu
Zhengkang Guo
Zhibo Xu
Yixin Wu
...
Tianlong Li
Jianhao Zhu
Cenyuan Zhang
Zixuan Ling
Xiaoqing Zheng
38
1
0
23 Jun 2024
Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity
C. C. Wanjura
Florian Marquardt
55
1
0
10 Jun 2024
Towards Interpretable Deep Local Learning with Successive Gradient Reconciliation
Yibo Yang
Xiaojie Li
Motasem Alfarra
Hasan Hammoud
Adel Bibi
Philip Torr
Guohao Li
37
2
0
07 Jun 2024
Deep Learning without Weight Symmetry
Ji-An Li
M. Benna
32
1
0
31 May 2024
Pretraining with Random Noise for Fast and Robust Learning without Weight Transport
Jeonghwan Cheon
Sang Wan Lee
Se-Bum Paik
OOD
203
1
0
27 May 2024
Contribute to balance, wire in accordance: Emergence of backpropagation from a simple, bio-plausible neuroplasticity rule
Xinhao Fan
S. P. Mysore
37
0
0
23 May 2024
Gradient-Free Training of Recurrent Neural Networks using Random Perturbations
Jesus Garcia Fernandez
Sander Keemink
Marcel van Gerven
AAML
45
4
0
14 May 2024
Scaling Supervised Local Learning with Augmented Auxiliary Networks
Chenxiang Ma
Jibin Wu
Chenyang Si
Kay Chen Tan
49
2
0
27 Feb 2024
End-to-End Training Induces Information Bottleneck through Layer-Role Differentiation: A Comparative Analysis with Layer-wise Training
Keitaro Sakamoto
Issei Sato
24
4
0
14 Feb 2024
Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning
Achref Jaziri
Sina Ditzel
Iuliia Pliushch
Visvanathan Ramesh
SSL
44
1
0
22 Nov 2023
Brain-like Flexible Visual Inference by Harnessing Feedback-Feedforward Alignment
Tahereh Toosi
Elias B. Issa
19
2
0
31 Oct 2023
Leader-Follower Neural Networks with Local Error Signals Inspired by Complex Collectives
Chenzhong Yin
Mingxi Cheng
Xiongye Xiao
Xinghe Chen
Shahin Nazarian
Andrei Irimia
Paul Bogdan
24
2
0
11 Oct 2023
Improving equilibrium propagation without weight symmetry through Jacobian homeostasis
Axel Laborieux
Friedemann Zenke
20
7
0
05 Sep 2023
Training neural networks with end-to-end optical backpropagation
J. Spall
Xianxin Guo
A. Lvovsky
27
6
0
09 Aug 2023
Can Forward Gradient Match Backpropagation?
Louis Fournier
Stéphane Rivaud
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
19
16
0
12 Jun 2023
Implicit Regularization in Feedback Alignment Learning Mechanisms for Neural Networks
Zachary Robertson
Oluwasanmi Koyejo
38
0
0
02 Jun 2023
A Rainbow in Deep Network Black Boxes
Florentin Guth
Brice Ménard
G. Rochette
S. Mallat
30
10
0
29 May 2023
Block-local learning with probabilistic latent representations
David Kappel
Khaleelulla Khan Nazeer
Cabrel Teguemne Fokam
Christian Mayr
Anand Subramoney
24
4
0
24 May 2023
Understanding and Improving Optimization in Predictive Coding Networks
Nick Alonso
J. Krichmar
Emre Neftci
73
7
0
23 May 2023
Brain-inspired learning in artificial neural networks: a review
Samuel Schmidgall
Jascha Achterberg
Thomas Miconi
Louis Kirsch
Rojin Ziaei
S. P. Hajiseyedrazi
Jason Eshraghian
31
52
0
18 May 2023
Forward Learning with Top-Down Feedback: Empirical and Analytical Characterization
R. Srinivasan
Francesca Mignacco
M. Sorbaro
Maria Refinetti
A. Cooper
Gabriel Kreiman
Giorgia Dellaferrera
27
15
0
10 Feb 2023
Dual Propagation: Accelerating Contrastive Hebbian Learning with Dyadic Neurons
R. Høier
D. Staudt
Christopher Zach
31
11
0
02 Feb 2023
Interpreting learning in biological neural networks as zero-order optimization method
Johannes Schmidt-Hieber
30
4
0
27 Jan 2023
The Predictive Forward-Forward Algorithm
Alexander Ororbia
A. Mali
35
37
0
04 Jan 2023
Learning efficient backprojections across cortical hierarchies in real time
Kevin Max
Laura Kriener
Garibaldi Pineda García
Thomas Nowotny
Ismael Jaras
Walter Senn
Mihai A. Petrovici
OOD
26
15
0
20 Dec 2022
Fixed-Weight Difference Target Propagation
Tatsukichi Shibuya
Nakamasa Inoue
Rei Kawakami
Ikuro Sato
AAML
22
3
0
19 Dec 2022
Low-Variance Forward Gradients using Direct Feedback Alignment and Momentum
Florian Bacho
Dominique F. Chu
21
8
0
14 Dec 2022
Is Bio-Inspired Learning Better than Backprop? Benchmarking Bio Learning vs. Backprop
Manas Gupta
Sarthak Ketanbhai Modi
Hang Zhang
Joon Hei Lee
J. Lim
27
7
0
09 Dec 2022
Meta-Learning Biologically Plausible Plasticity Rules with Random Feedback Pathways
Navid Shervani-Tabar
Robert Rosenbaum
AI4CE
42
14
0
28 Oct 2022
Multi-level Data Representation For Training Deep Helmholtz Machines
J. M. Ramos
Luis Sa-Couto
Andreas Wichert
18
0
0
26 Oct 2022
Scaling Laws Beyond Backpropagation
Matthew J. Filipovich
Alessandro Cappelli
Daniel Hesslow
Julien Launay
19
3
0
26 Oct 2022
Scaling Forward Gradient With Local Losses
Mengye Ren
Simon Kornblith
Renjie Liao
Geoffrey E. Hinton
81
49
0
07 Oct 2022
The Influence of Learning Rule on Representation Dynamics in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
41
22
0
05 Oct 2022
Hebbian Deep Learning Without Feedback
Adrien Journé
Hector Garcia Rodriguez
Qinghai Guo
Timoleon Moraitis
AAML
31
49
0
23 Sep 2022
Holomorphic Equilibrium Propagation Computes Exact Gradients Through Finite Size Oscillations
Axel Laborieux
Friedemann Zenke
36
33
0
01 Sep 2022
The least-control principle for local learning at equilibrium
Alexander Meulemans
Nicolas Zucchet
Seijin Kobayashi
J. Oswald
João Sacramento
28
20
0
04 Jul 2022
Brain-like combination of feedforward and recurrent network components achieves prototype extraction and robust pattern recognition
Naresh B. Ravichandran
A. Lansner
Pawel Herman
32
4
0
30 Jun 2022
A Robust Backpropagation-Free Framework for Images
Timothy Zee
Alexander Ororbia
A. Mali
Ifeoma Nwogu
18
1
0
03 Jun 2022
A Theoretical Framework for Inference Learning
Nick Alonso
Beren Millidge
J. Krichmar
Emre Neftci
17
16
0
01 Jun 2022
EXODUS: Stable and Efficient Training of Spiking Neural Networks
F. Bauer
Gregor Lenz
Saeid Haghighatshoar
Sadique Sheik
BDL
36
15
0
20 May 2022
A Computational Framework of Cortical Microcircuits Approximates Sign-concordant Random Backpropagation
Yukun Yang
Peng Li
24
1
0
15 May 2022
1
2
3
Next