ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.08912
  4. Cited By
Meta-Learning Priors for Efficient Online Bayesian Regression

Meta-Learning Priors for Efficient Online Bayesian Regression

24 July 2018
James Harrison
Apoorva Sharma
Marco Pavone
    BDL
ArXivPDFHTML

Papers citing "Meta-Learning Priors for Efficient Online Bayesian Regression"

38 / 38 papers shown
Title
Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
Jacob Levy
Jason Gibson
Bogdan I. Vlahov
Erica Tevere
Evangelos A. Theodorou
David Fridovich-Keil
Patrick Spieler
49
0
0
23 Apr 2025
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
El Mahdi Chayti
Martin Jaggi
38
1
0
05 Sep 2024
Bayesian meta learning for trustworthy uncertainty quantification
Bayesian meta learning for trustworthy uncertainty quantification
Zhenyuan Yuan
Thinh T. Doan
UQCV
43
0
0
27 Jul 2024
OCCAM: Online Continuous Controller Adaptation with Meta-Learned Models
OCCAM: Online Continuous Controller Adaptation with Meta-Learned Models
Hersh Sanghvi
Spencer Folk
Camillo J Taylor
52
3
0
25 Jun 2024
Bayesian inference for data-efficient, explainable, and safe robotic
  motion planning: A review
Bayesian inference for data-efficient, explainable, and safe robotic motion planning: A review
Chengmin Zhou
Chao Wang
Haseeb Hassan
H. Shah
Bingding Huang
Pasi Fränti
3DV
43
3
0
16 Jul 2023
Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian
  Learning
Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian Learning
Shengbo Wang
Ke Li
Yin Yang
Yuting Cao
Tingwen Huang
S. Wen
29
4
0
03 Jul 2023
Graph Reinforcement Learning for Network Control via Bi-Level
  Optimization
Graph Reinforcement Learning for Network Control via Bi-Level Optimization
Daniele Gammelli
James Harrison
Kaidi Yang
Marco Pavone
Filipe Rodrigues
Francisco Câmara Pereira
AI4CE
46
6
0
16 May 2023
Experience-Based Evolutionary Algorithms for Expensive Optimization
Experience-Based Evolutionary Algorithms for Expensive Optimization
Xunzhao Yu
Yan Wang
Ling Zhu
Dimitar Filev
Xin Yao
17
2
0
09 Apr 2023
Uncertainty-Aware Meta-Learning for Multimodal Task Distributions
Uncertainty-Aware Meta-Learning for Multimodal Task Distributions
Cesar Almecija
Apoorva Sharma
Navid Azizan
OOD
UQCV
26
3
0
04 Oct 2022
Expanding the Deployment Envelope of Behavior Prediction via Adaptive
  Meta-Learning
Expanding the Deployment Envelope of Behavior Prediction via Adaptive Meta-Learning
Boris Ivanovic
James Harrison
Marco Pavone
AI4CE
36
27
0
23 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
49
22
0
22 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
83
24
0
01 Sep 2022
Control-oriented meta-learning
Control-oriented meta-learning
Spencer M. Richards
Navid Azizan
Jean-Jacques E. Slotine
Marco Pavone
37
24
0
14 Apr 2022
Safe Learning-Based Feedback Linearization Tracking Control for
  Nonlinear System with Event-Triggered Model Update
Safe Learning-Based Feedback Linearization Tracking Control for Nonlinear System with Event-Triggered Model Update
Zhixuan Wu
Ruicong Yang
Lei Zheng
Hui Cheng
46
12
0
07 Mar 2022
Non-Gaussian Gaussian Processes for Few-Shot Regression
Non-Gaussian Gaussian Processes for Few-Shot Regression
Marcin Sendera
Jacek Tabor
A. Nowak
Andrzej Bedychaj
Massimiliano Patacchiola
Tomasz Trzciñski
Przemysław Spurek
Maciej Ziȩba
23
19
0
26 Oct 2021
Bayesian Embeddings for Few-Shot Open World Recognition
Bayesian Embeddings for Few-Shot Open World Recognition
John Willes
James Harrison
Ali Harakeh
Chelsea Finn
Marco Pavone
Steven Waslander
BDL
OffRL
27
18
0
29 Jul 2021
Meta-Learning Reliable Priors in the Function Space
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
42
27
0
06 Jun 2021
Adaptive Robust Model Predictive Control with Matched and Unmatched
  Uncertainty
Adaptive Robust Model Predictive Control with Matched and Unmatched Uncertainty
Rohan Sinha
James Harrison
Spencer M. Richards
Marco Pavone
24
22
0
16 Apr 2021
Dual Online Stein Variational Inference for Control and Dynamics
Dual Online Stein Variational Inference for Control and Dynamics
Lucas Barcelos
Alexander Lambert
Rafael Oliveira
Paulo Borges
Byron Boots
F. Ramos
35
27
0
23 Mar 2021
Adaptive-Control-Oriented Meta-Learning for Nonlinear Systems
Adaptive-Control-Oriented Meta-Learning for Nonlinear Systems
Spencer M. Richards
Navid Azizan
Jean-Jacques E. Slotine
Marco Pavone
37
70
0
07 Mar 2021
Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
  Platforms
Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic Platforms
Ali Ghadirzadeh
Xi Chen
Petra Poklukar
Chelsea Finn
Mårten Björkman
Danica Kragic
BDL
39
41
0
05 Mar 2021
Few-shot Learning for Spatial Regression
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
32
11
0
09 Oct 2020
Information Theoretic Meta Learning with Gaussian Processes
Information Theoretic Meta Learning with Gaussian Processes
Michalis K. Titsias
Francisco J. R. Ruiz
Sotirios Nikoloutsopoulos
Alexandre Galashov
FedML
33
15
0
07 Sep 2020
Safe Active Dynamics Learning and Control: A Sequential
  Exploration-Exploitation Framework
Safe Active Dynamics Learning and Control: A Sequential Exploration-Exploitation Framework
T. Lew
Apoorva Sharma
James Harrison
Andrew Bylard
Marco Pavone
28
44
0
26 Aug 2020
Sampling-based Reachability Analysis: A Random Set Theory Approach with
  Adversarial Sampling
Sampling-based Reachability Analysis: A Random Set Theory Approach with Adversarial Sampling
T. Lew
Marco Pavone
AAML
30
53
0
24 Aug 2020
A Comprehensive Overview and Survey of Recent Advances in Meta-Learning
A Comprehensive Overview and Survey of Recent Advances in Meta-Learning
Huimin Peng
VLM
OffRL
26
35
0
17 Apr 2020
Probabilistic Safety Constraints for Learned High Relative Degree System
  Dynamics
Probabilistic Safety Constraints for Learned High Relative Degree System Dynamics
M. J. Khojasteh
Vikas Dhiman
M. Franceschetti
Nikolay Atanasov
38
73
0
20 Dec 2019
Continuous Meta-Learning without Tasks
Continuous Meta-Learning without Tasks
James Harrison
Apoorva Sharma
Chelsea Finn
Marco Pavone
CLL
OOD
30
79
0
18 Dec 2019
Bayesian Learning-Based Adaptive Control for Safety Critical Systems
Bayesian Learning-Based Adaptive Control for Safety Critical Systems
David D. Fan
Jennifer Nguyen
Rohan Thakker
Nikhilesh Alatur
Ali-akbar Agha-mohammadi
Evangelos A. Theodorou
BDL
39
84
0
05 Oct 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
196
640
0
19 Sep 2019
Meta-Learning with Implicit Gradients
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
48
844
0
10 Sep 2019
Network Offloading Policies for Cloud Robotics: a Learning-based
  Approach
Network Offloading Policies for Cloud Robotics: a Learning-based Approach
Sandeep P. Chinchali
Apoorva Sharma
James Harrison
Amine Elhafsi
Daniel Kang
Evgenya Pergament
Eyal Cidon
Sachin Katti
Marco Pavone
OffRL
11
105
0
15 Feb 2019
Meta-Learning Mean Functions for Gaussian Processes
Meta-Learning Mean Functions for Gaussian Processes
Vincent Fortuin
Heiko Strathmann
Gunnar Rätsch
BDL
FedML
MLT
24
29
0
23 Jan 2019
BaRC: Backward Reachability Curriculum for Robotic Reinforcement
  Learning
BaRC: Backward Reachability Curriculum for Robotic Reinforcement Learning
Boris Ivanovic
James Harrison
Apoorva Sharma
Mo Chen
Marco Pavone
OffRL
32
57
0
16 Jun 2018
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
231
500
0
11 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
178
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
496
11,727
0
09 Mar 2017
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
94
271
0
24 Feb 2014
1