Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.09519
Cited By
A machine learning framework for data driven acceleration of computations of differential equations
25 July 2018
Siddhartha Mishra
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A machine learning framework for data driven acceleration of computations of differential equations"
24 / 24 papers shown
Title
Rational-WENO: A lightweight, physically-consistent three-point weighted essentially non-oscillatory scheme
S. Shahane
Sheide Chammas
Deniz A. Bezgin
Aaron B. Buhendwa
Steffen J. Schmidt
...
Spencer H. Bryngelson
Yi-Fan Chen
Qing Wang
Fei Sha
Leonardo Zepeda-Núñez
70
2
0
13 Sep 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
97
7
0
08 May 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núñez
137
15
0
06 Feb 2024
Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations
Anudhyan Boral
Z. Y. Wan
Leonardo Zepeda-Núñez
James Lottes
Qing Wang
Yi-fan Chen
John R. Anderson
Fei Sha
AI4CE
PINN
85
11
0
01 Jun 2023
A Neural PDE Solver with Temporal Stencil Modeling
Zhiqing Sun
Yiming Yang
Shinjae Yoo
DiffM
AI4CE
98
17
0
16 Feb 2023
Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For Advection-Dominated Systems
Z. Y. Wan
Leonardo Zepeda-Núñez
Anudhyan Boral
Fei Sha
BDL
AI4CE
86
13
0
25 Jan 2023
Learning Relaxation for Multigrid
Dmitry Kuznichov
AI4CE
46
1
0
25 Jul 2022
Learning to correct spectral methods for simulating turbulent flows
Gideon Dresdner
Dmitrii Kochkov
Peter C. Norgaard
Leonardo Zepeda-Núñez
Jamie A. Smith
M. Brenner
Stephan Hoyer
AI4CE
88
62
0
01 Jul 2022
Multigoal-oriented dual-weighted-residual error estimation using deep neural networks
Ayan Chakraborty
T. Wick
X. Zhuang
Timon Rabczuk
58
8
0
21 Dec 2021
Learning optimal multigrid smoothers via neural networks
Ru Huang
Ruipeng Li
Yuanzhe Xi
AI4CE
69
30
0
24 Feb 2021
STENCIL-NET: Data-driven solution-adaptive discretization of partial differential equations
Suryanarayana Maddu
D. Sturm
B. Cheeseman
Christian L. Müller
I. Sbalzarini
45
8
0
15 Jan 2021
Iterative Surrogate Model Optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
K. Lye
Siddhartha Mishra
Deep Ray
P. Chandrasekhar
90
77
0
13 Aug 2020
An unsupervised learning approach to solving heat equations on chip based on Auto Encoder and Image Gradient
Haiyang He
Jay Pathak
66
24
0
19 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
109
267
0
29 Jun 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
79
173
0
29 Jun 2020
Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
Siddhartha Mishra
T. Konstantin Rusch
82
50
0
26 May 2020
Mean-Field and Kinetic Descriptions of Neural Differential Equations
Michael Herty
T. Trimborn
G. Visconti
118
6
0
07 Jan 2020
A Multi-level procedure for enhancing accuracy of machine learning algorithms
K. Lye
Siddhartha Mishra
Roberto Molinaro
66
32
0
20 Sep 2019
Variational training of neural network approximations of solution maps for physical models
Yingzhou Li
Jianfeng Lu
Anqi Mao
GAN
81
36
0
07 May 2019
Constraint-Aware Neural Networks for Riemann Problems
Jim Magiera
Deep Ray
J. Hesthaven
C. Rohde
AI4CE
PINN
73
60
0
29 Apr 2019
Deep learning observables in computational fluid dynamics
K. Lye
Siddhartha Mishra
Deep Ray
OOD
AI4CE
126
159
0
07 Mar 2019
Learning to Optimize Multigrid PDE Solvers
D. Greenfeld
Meirav Galun
Ron Kimmel
I. Yavneh
Ronen Basri
AI4CE
99
119
0
25 Feb 2019
A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients
Arnulf Jentzen
Diyora Salimova
Timo Welti
AI4CE
73
119
0
19 Sep 2018
A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philippe von Wurstemberger
86
171
0
07 Sep 2018
1