Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.09705
Cited By
Limitations of the Lipschitz constant as a defense against adversarial examples
25 July 2018
Todd P. Huster
C. Chiang
R. Chadha
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Limitations of the Lipschitz constant as a defense against adversarial examples"
19 / 19 papers shown
Title
Parseval Convolution Operators and Neural Networks
Michael Unser
Stanislas Ducotterd
23
3
0
19 Aug 2024
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
14
4
0
12 Sep 2023
PDE+: Enhancing Generalization via PDE with Adaptive Distributional Diffusion
Yige Yuan
Bingbing Xu
Bo Lin
Liang Hou
Fei Sun
Huawei Shen
Xueqi Cheng
DiffM
24
4
0
25 May 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
13
26
0
22 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
24
15
0
13 Apr 2022
On the Stochastic Stability of Deep Markov Models
Ján Drgoňa
Sayak Mukherjee
Jiaxin Zhang
Frank Liu
M. Halappanavar
BDL
17
5
0
08 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
27
76
0
02 Nov 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
On the Certified Robustness for Ensemble Models and Beyond
Zhuolin Yang
Linyi Li
Xiaojun Xu
B. Kailkhura
Tao Xie
Bo-wen Li
AAML
16
48
0
22 Jul 2021
Demotivate adversarial defense in remote sensing
Adrien Chan-Hon-Tong
Gaston Lenczner
A. Plyer
AAML
17
5
0
28 May 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
16
52
0
11 May 2021
CLIP: Cheap Lipschitz Training of Neural Networks
Leon Bungert
René Raab
Tim Roith
Leo Schwinn
Daniel Tenbrinck
24
32
0
23 Mar 2021
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
Martin Genzel
Jan Macdonald
M. März
AAML
OOD
24
101
0
09 Nov 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
Enhancing Intrinsic Adversarial Robustness via Feature Pyramid Decoder
Guanlin Li
Shuya Ding
Jun-Jie Luo
Chang-rui Liu
AAML
42
19
0
06 May 2020
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen
J. Lasserre
Victor Magron
Edouard Pauwels
31
3
0
10 Feb 2020
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
13
77
0
27 May 2019
1