ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.11783
  4. Cited By
Scale equivariance in CNNs with vector fields

Scale equivariance in CNNs with vector fields

31 July 2018
Diego Marcos
B. Kellenberger
Sylvain Lobry
D. Tuia
ArXivPDFHTML

Papers citing "Scale equivariance in CNNs with vector fields"

15 / 15 papers shown
Title
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
53
1
0
17 Sep 2024
Scale-Equivariant UNet for Histopathology Image Segmentation
Scale-Equivariant UNet for Histopathology Image Segmentation
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
28
12
0
10 Apr 2023
Deep Neural Networks with Efficient Guaranteed Invariances
Deep Neural Networks with Efficient Guaranteed Invariances
M. Rath
A. P. Condurache
18
4
0
02 Mar 2023
A study on the invariance in security whatever the dimension of images
  for the steganalysis by deep-learning
A study on the invariance in security whatever the dimension of images for the steganalysis by deep-learning
Kévin Planolles
Marc Chaumont
Frédéric Comby
28
0
0
22 Feb 2023
Improving the Sample-Complexity of Deep Classification Networks with
  Invariant Integration
Improving the Sample-Complexity of Deep Classification Networks with Invariant Integration
M. Rath
A. P. Condurache
25
8
0
08 Feb 2022
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Liyao (Mars) Gao
Guang Lin
Wei-wei Zhu
27
8
0
22 Nov 2021
Capacity of Group-invariant Linear Readouts from Equivariant
  Representations: How Many Objects can be Linearly Classified Under All
  Possible Views?
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
Cengiz Pehlevan
18
5
0
14 Oct 2021
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
11
23
0
11 Jun 2021
Resolution learning in deep convolutional networks using scale-space
  theory
Resolution learning in deep convolutional networks using scale-space theory
Silvia L.Pintea
Nergis Tomen
Stanley F. Goes
Marco Loog
Jan van Gemert
SupR
SSL
32
37
0
07 Jun 2021
DISCO: accurate Discrete Scale Convolutions
DISCO: accurate Discrete Scale Convolutions
Ivan Sosnovik
A. Moskalev
A. Smeulders
26
31
0
04 Jun 2021
On Translation Invariance in CNNs: Convolutional Layers can Exploit
  Absolute Spatial Location
On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location
O. Kayhan
Jan van Gemert
211
233
0
16 Mar 2020
Attentive Group Equivariant Convolutional Networks
Attentive Group Equivariant Convolutional Networks
David W. Romero
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
22
90
0
07 Feb 2020
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On
  Transformations Co-Occurring In Data
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring In Data
David W. Romero
Mark Hoogendoorn
29
24
0
18 Nov 2019
B-Spline CNNs on Lie Groups
B-Spline CNNs on Lie Groups
Erik J. Bekkers
AI4CE
35
129
0
26 Sep 2019
Deep Scale-spaces: Equivariance Over Scale
Deep Scale-spaces: Equivariance Over Scale
Daniel E. Worrall
Max Welling
BDL
15
166
0
28 May 2019
1