Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.01204
Cited By
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
3 August 2018
Yuanzhi Li
Yingyu Liang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data"
50 / 133 papers shown
Title
Convergence proof for stochastic gradient descent in the training of deep neural networks with ReLU activation for constant target functions
Martin Hutzenthaler
Arnulf Jentzen
Katharina Pohl
Adrian Riekert
Luca Scarpa
MLT
34
6
0
13 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wenjia Wang
Zhenguo Li
UQCV
AAML
38
19
0
07 Dec 2021
Fast Graph Neural Tangent Kernel via Kronecker Sketching
Shunhua Jiang
Yunze Man
Zhao-quan Song
Zheng Yu
Danyang Zhuo
26
6
0
04 Dec 2021
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Tri Dao
Beidi Chen
Kaizhao Liang
Jiaming Yang
Zhao-quan Song
Atri Rudra
Christopher Ré
30
75
0
30 Nov 2021
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
24
32
0
02 Nov 2021
A global convergence theory for deep ReLU implicit networks via over-parameterization
Tianxiang Gao
Hailiang Liu
Jia Liu
Hridesh Rajan
Hongyang Gao
MLT
23
16
0
11 Oct 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
32
7
0
11 Oct 2021
Does Preprocessing Help Training Over-parameterized Neural Networks?
Zhao-quan Song
Shuo Yang
Ruizhe Zhang
35
49
0
09 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
30
11
0
06 Oct 2021
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization
Difan Zou
Yuan Cao
Yuanzhi Li
Quanquan Gu
MLT
AI4CE
44
38
0
25 Aug 2021
Fast Sketching of Polynomial Kernels of Polynomial Degree
Zhao-quan Song
David P. Woodruff
Zheng Yu
Lichen Zhang
13
40
0
21 Aug 2021
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
25
274
0
29 Jun 2021
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Yining Chen
Elan Rosenfeld
Mark Sellke
Tengyu Ma
Andrej Risteski
OOD
26
32
0
18 Jun 2021
Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning
Zixin Wen
Yuanzhi Li
SSL
MLT
26
131
0
31 May 2021
FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Convergence Analysis
Baihe Huang
Xiaoxiao Li
Zhao-quan Song
Xin Yang
FedML
23
16
0
11 May 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
28
30
0
01 May 2021
A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
Arnulf Jentzen
Adrian Riekert
MLT
32
13
0
01 Apr 2021
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
29
2
0
26 Feb 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
Convergence rates for gradient descent in the training of overparameterized artificial neural networks with biases
Arnulf Jentzen
T. Kröger
ODL
28
7
0
23 Feb 2021
A proof of convergence for gradient descent in the training of artificial neural networks for constant target functions
Patrick Cheridito
Arnulf Jentzen
Adrian Riekert
Florian Rossmannek
23
24
0
19 Feb 2021
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network
Mo Zhou
Rong Ge
Chi Jin
74
44
0
04 Feb 2021
Fundamental Tradeoffs in Distributionally Adversarial Training
M. Mehrabi
Adel Javanmard
Ryan A. Rossi
Anup B. Rao
Tung Mai
AAML
20
17
0
15 Jan 2021
Training Learned Optimizers with Randomly Initialized Learned Optimizers
Luke Metz
C. Freeman
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
43
12
0
14 Jan 2021
Reservoir Transformers
Sheng Shen
Alexei Baevski
Ari S. Morcos
Kurt Keutzer
Michael Auli
Douwe Kiela
32
17
0
30 Dec 2020
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
36
355
0
17 Dec 2020
Feature Space Singularity for Out-of-Distribution Detection
Haiwen Huang
Zhihan Li
Lulu Wang
Sishuo Chen
Bin Dong
Xinyu Zhou
OODD
20
65
0
30 Nov 2020
Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting
Zeke Xie
Fengxiang He
Shaopeng Fu
Issei Sato
Dacheng Tao
Masashi Sugiyama
21
59
0
12 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
34
18
0
09 Nov 2020
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Mingming Gong
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
24
26
0
22 Oct 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
26
62
0
21 Oct 2020
Computational Separation Between Convolutional and Fully-Connected Networks
Eran Malach
Shai Shalev-Shwartz
19
26
0
03 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
28
86
0
30 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao-quan Song
Mengdi Wang
Zheng Yu
18
42
0
21 Sep 2020
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
15
42
0
02 Aug 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
27
85
0
13 Jul 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
14
37
0
12 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
81
11
0
08 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
26
13
0
23 Mar 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
234
0
04 Mar 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
34
54
0
25 Feb 2020
Convergence of End-to-End Training in Deep Unsupervised Contrastive Learning
Zixin Wen
SSL
21
2
0
17 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao-quan Song
Sanjeev Arora
21
51
0
16 Feb 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
16
327
0
11 Feb 2020
Memory capacity of neural networks with threshold and ReLU activations
Roman Vershynin
31
21
0
20 Jan 2020
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
27
224
0
05 Dec 2019
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
32
214
0
03 Dec 2019
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
K. Zhang
Zhuoran Yang
Tamer Basar
36
1,180
0
24 Nov 2019
Previous
1
2
3
Next