Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.04327
Cited By
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
13 August 2018
M. Raissi
A. Yazdani
George Karniadakis
AI4CE
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data"
32 / 32 papers shown
Title
Data-driven Modeling of Combined Sewer Systems for Urban Sustainability: An Empirical Evaluation
Vipin Singh
Tianheng Ling
Teodor Chiaburu
Felix Biessmann
AI4CE
41
1
0
21 Aug 2024
Physics-informed Deep Learning to Solve Three-dimensional Terzaghi Consolidation Equation: Forward and Inverse Problems
Biao Yuan
Ana Heitor
He Wang
Xiaohui Chen
AI4CE
PINN
34
1
0
08 Jan 2024
Improving deep learning precipitation nowcasting by using prior knowledge
M. Choma
Petr Simánek
Jakub Bartel
34
0
0
27 Jan 2023
Physics-informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
Salah A. Faroughi
Ramin Soltanmohammad
Pingki Datta
S. K. Mahjour
S. Faroughi
21
22
0
17 Dec 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
49
0
14 Nov 2022
A comparison of PINN approaches for drift-diffusion equations on metric graphs
J. Blechschmidt
Jan-Frederik Pietschman
Tom-Christian Riemer
Martin Stoll
M. Winkler
18
2
0
15 May 2022
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
Maximilian Mueller
Robin Greif
Frank Jenko
Nils Thuerey
24
3
0
02 May 2022
Physics-constrained Unsupervised Learning of Partial Differential Equations using Meshes
M. Michelis
Robert K. Katzschmann
AI4CE
27
1
0
30 Mar 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
HyperPINN: Learning parameterized differential equations with physics-informed hypernetworks
Filipe de Avila Belbute-Peres
Yi-fan Chen
Fei Sha
PINN
16
38
0
28 Oct 2021
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
58
60
0
15 Sep 2021
IDRLnet: A Physics-Informed Neural Network Library
Wei Peng
Jun Zhang
Weien Zhou
Xiaoyu Zhao
W. Yao
Xiaoqian Chen
PINN
AI4CE
33
15
0
09 Jul 2021
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
21
100
0
28 Jun 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
222
0
26 Apr 2021
Transferable Model for Shape Optimization subject to Physical Constraints
Lukas Harsch
Johannes Burgbacher
S. Riedelbauch
AI4CE
24
1
0
19 Mar 2021
Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate Models in 3D
Nils Wandel
Michael Weinmann
Reinhard Klein
AI4CE
26
50
0
22 Dec 2020
Bridging the Gap: Machine Learning to Resolve Improperly Modeled Dynamics
Maan Qraitem
D. Kularatne
Eric Forgoston
M. A. Hsieh
AI4CE
23
10
0
23 Aug 2020
Semi Conditional Variational Auto-Encoder for Flow Reconstruction and Uncertainty Quantification from Limited Observations
K. Gundersen
A. Oleynik
N. Blaser
G. Alendal
BDL
27
27
0
19 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
25
171
0
29 Jun 2020
Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
Siddhartha Mishra
T. Konstantin Rusch
19
49
0
26 May 2020
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
Christopher J. Arthurs
A. King
PINN
37
51
0
02 May 2020
Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles
X. Jia
J. Willard
Anuj Karpatne
J. Read
Jacob Aaron Zwart
M. Steinbach
Vipin Kumar
AI4CE
PINN
18
207
0
28 Jan 2020
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
44
185
0
21 Jan 2020
A Derivative-Free Method for Solving Elliptic Partial Differential Equations with Deep Neural Networks
Jihun Han
Mihai Nica
A. Stinchcombe
22
49
0
17 Jan 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
23
291
0
13 Jan 2020
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
21
236
0
27 Nov 2019
A Multi-level procedure for enhancing accuracy of machine learning algorithms
K. Lye
Siddhartha Mishra
Roberto Molinaro
15
32
0
20 Sep 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
25
1,485
0
10 Jul 2019
Deep learning observables in computational fluid dynamics
K. Lye
Siddhartha Mishra
Deep Ray
OOD
AI4CE
13
158
0
07 Mar 2019
Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows
Nils Thuerey
Konstantin Weissenow
L. Prantl
Xiangyu Y. Hu
AI4CE
25
377
0
18 Oct 2018
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
M. A. Nabian
Hadi Meidani
PINN
AI4CE
21
57
0
11 Oct 2018
General solutions for nonlinear differential equations: a rule-based self-learning approach using deep reinforcement learning
Shiyin Wei
Xiaowei Jin
Hui Li
AI4CE
39
39
0
13 May 2018
1