Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.06651
Cited By
Privacy Amplification by Iteration
20 August 2018
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Privacy Amplification by Iteration"
46 / 46 papers shown
Title
Quantitative Auditing of AI Fairness with Differentially Private Synthetic Data
Chih-Cheng Rex Yuan
Bow-Yaw Wang
52
0
0
30 Apr 2025
How Private is Your Attention? Bridging Privacy with In-Context Learning
Soham Bonnerjee
Zhen Wei
Yeon
Anna Asch
Sagnik Nandy
Promit Ghosal
51
0
0
22 Apr 2025
An Improved Privacy and Utility Analysis of Differentially Private SGD with Bounded Domain and Smooth Losses
Hao Liang
Wenwei Zhang
Xinlei He
Kaishun He
Hong Xing
49
0
0
25 Feb 2025
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
93
0
0
02 Dec 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
34
7
0
08 Oct 2024
NetDPSyn: Synthesizing Network Traces under Differential Privacy
Danyu Sun
Joann Qiongna Chen
Chen Gong
Tianhao Wang
Zhou Li
62
1
0
08 Sep 2024
Privacy of the last iterate in cyclically-sampled DP-SGD on nonconvex composite losses
Weiwei Kong
Mónica Ribero
37
3
0
07 Jul 2024
Differentially Private Graph Diffusion with Applications in Personalized PageRanks
Rongzhe Wei
Eli Chien
P. Li
47
5
0
22 Jun 2024
Tight Group-Level DP Guarantees for DP-SGD with Sampling via Mixture of Gaussians Mechanisms
Arun Ganesh
28
2
0
17 Jan 2024
Privacy Amplification by Iteration for ADMM with (Strongly) Convex Objective Functions
T.-H. Hubert Chan
Hao Xie
Mengshi Zhao
37
1
0
14 Dec 2023
Privacy Loss of Noisy Stochastic Gradient Descent Might Converge Even for Non-Convex Losses
S. Asoodeh
Mario Díaz
20
6
0
17 May 2023
On the Query Complexity of Training Data Reconstruction in Private Learning
Prateeti Mukherjee
Satyanarayana V. Lokam
35
0
0
29 Mar 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
99
167
0
01 Mar 2023
From Noisy Fixed-Point Iterations to Private ADMM for Centralized and Federated Learning
Edwige Cyffers
A. Bellet
D. Basu
FedML
29
5
0
24 Feb 2023
Straggler-Resilient Differentially-Private Decentralized Learning
Yauhen Yakimenka
Chung-Wei Weng
Hsuan-Yin Lin
E. Rosnes
J. Kliewer
36
6
0
06 Dec 2022
Distributed DP-Helmet: Scalable Differentially Private Non-interactive Averaging of Single Layers
Moritz Kirschte
Sebastian Meiser
Saman Ardalan
Esfandiar Mohammadi
FedML
34
0
0
03 Nov 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
38
24
0
16 Oct 2022
Momentum Aggregation for Private Non-convex ERM
Hoang Tran
Ashok Cutkosky
28
14
0
12 Oct 2022
Differentially Private Deep Learning with ModelMix
Hanshen Xiao
Jun Wan
S. Devadas
29
3
0
07 Oct 2022
Measuring Forgetting of Memorized Training Examples
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
75
102
0
30 Jun 2022
Differentially Private Learning Needs Hidden State (Or Much Faster Convergence)
Jiayuan Ye
Reza Shokri
FedML
35
44
0
10 Mar 2022
Differential Privacy Amplification in Quantum and Quantum-inspired Algorithms
Armando Angrisani
Mina Doosti
E. Kashefi
24
12
0
07 Mar 2022
Tailoring Gradient Methods for Differentially-Private Distributed Optimization
Yongqiang Wang
A. Nedić
27
67
0
02 Feb 2022
Public Data-Assisted Mirror Descent for Private Model Training
Ehsan Amid
Arun Ganesh
Rajiv Mathews
Swaroop Indra Ramaswamy
Shuang Song
Thomas Steinke
Vinith Suriyakumar
Om Thakkar
Abhradeep Thakurta
21
49
0
01 Dec 2021
Label differential privacy via clustering
Hossein Esfandiari
Vahab Mirrokni
Umar Syed
Sergei Vassilvitskii
FedML
26
26
0
05 Oct 2021
Random Sampling Plus Fake Data: Multidimensional Frequency Estimates With Local Differential Privacy
Héber H. Arcolezi
Jean-François Couchot
Bechara al Bouna
Xiaokui Xiao
25
27
0
15 Sep 2021
Differentially Private Algorithms for Clustering with Stability Assumptions
M. Shechner
21
2
0
11 Jun 2021
DP-Image: Differential Privacy for Image Data in Feature Space
Hanyu Xue
Bo Liu
Ming Ding
Tianqing Zhu
Dayong Ye
Li-Na Song
Wanlei Zhou
17
33
0
12 Mar 2021
Stability of SGD: Tightness Analysis and Improved Bounds
Yikai Zhang
Wenjia Zhang
Sammy Bald
Vamsi Pingali
Chao Chen
Mayank Goswami
MLT
27
36
0
10 Feb 2021
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
82
216
0
11 Jan 2021
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
49
39
0
09 Dec 2020
Differentially Private Synthetic Data: Applied Evaluations and Enhancements
Lucas Rosenblatt
Xiao-Yang Liu
Samira Pouyanfar
Eduardo de Leon
Anuj M. Desai
Joshua Allen
SyDa
26
64
0
11 Nov 2020
Bypassing the Ambient Dimension: Private SGD with Gradient Subspace Identification
Yingxue Zhou
Zhiwei Steven Wu
A. Banerjee
24
108
0
07 Jul 2020
Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses
Raef Bassily
Vitaly Feldman
Cristóbal Guzmán
Kunal Talwar
MLT
24
192
0
12 Jun 2020
Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent
Shuang Song
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
35
50
0
11 Jun 2020
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
13
203
0
10 May 2020
Differentially Private Set Union
Sivakanth Gopi
P. Gulhane
Janardhan Kulkarni
J. Shen
Milad Shokouhi
Sergey Yekhanin
FedML
27
32
0
22 Feb 2020
A Better Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via
f
f
f
-Divergences
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
FedML
24
38
0
16 Jan 2020
Secure Federated Submodel Learning
Chaoyue Niu
Fan Wu
Shaojie Tang
Lifeng Hua
Rongfei Jia
Chengfei Lv
Zhihua Wu
Guihai Chen
FedML
14
30
0
06 Nov 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
35
122
0
04 Jun 2019
The Privacy Blanket of the Shuffle Model
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
42
236
0
07 Mar 2019
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Nicholas J. A. Harvey
Christopher Liaw
Y. Plan
Sikander Randhawa
19
137
0
13 Dec 2018
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
150
420
0
29 Nov 2018
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
33
39
0
11 Jul 2018
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
D. Song
89
1,114
0
22 Feb 2018
BLENDER: Enabling Local Search with a Hybrid Differential Privacy Model
Brendan Avent
Aleksandra Korolova
David Zeber
Torgeir Hovden
B. Livshits
FedML
32
98
0
02 May 2017
1