Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.07105
Cited By
v1
v2
v3 (latest)
Non-asymptotic bounds for sampling algorithms without log-concavity
21 August 2018
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Non-asymptotic bounds for sampling algorithms without log-concavity"
27 / 27 papers shown
Title
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
175
3
0
28 Jan 2025
Asynchronous Bayesian Learning over a Network
Kinjal Bhar
H. Bai
Jemin George
Carl E. Busart
FedML
56
0
0
16 Nov 2022
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
115
15
0
05 Oct 2022
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
Lei Li
Yuliang Wang
95
11
0
19 Jul 2022
Non-asymptotic convergence bounds for modified tamed unadjusted Langevin algorithm in non-convex setting
Ariel Neufeld
Matthew Ng Cheng En
Ying Zhang
85
12
0
06 Jul 2022
Convergence for score-based generative modeling with polynomial complexity
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
80
140
0
13 Jun 2022
Constrained Langevin Algorithms with L-mixing External Random Variables
Yu Zheng
Andrew G. Lamperski
83
6
0
27 May 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
108
65
0
10 Feb 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
83
5
0
20 Jan 2022
Unadjusted Langevin algorithm for sampling a mixture of weakly smooth potentials
D. Nguyen
58
5
0
17 Dec 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
88
21
0
02 Aug 2021
Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations
J. Sanz-Serna
K. Zygalakis
71
23
0
26 Apr 2021
Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning
Andrew G. Lamperski
42
28
0
22 Dec 2020
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev
Tianlin Li
Qi Lei
Ioannis Panageas
65
20
0
11 Oct 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
88
77
0
27 May 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
97
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
71
66
0
11 Feb 2020
Mean-Field Neural ODEs via Relaxed Optimal Control
Jean-François Jabir
D. vSivska
Lukasz Szpruch
MLT
141
38
0
11 Dec 2019
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
104
47
0
04 Oct 2019
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal Rates without Convexity
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
68
68
0
25 Jul 2019
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
81
139
0
16 Jul 2019
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets
A. Dalalyan
Avetik G. Karagulyan
L. Riou-Durand
111
39
0
20 Jun 2019
On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case
N. H. Chau
'. Moulines
Miklós Rásonyi
Sotirios Sabanis
Ying Zhang
94
41
0
30 May 2019
Convergence of diffusions and their discretizations: from continuous to discrete processes and back
Valentin De Bortoli
Alain Durmus
60
22
0
22 Apr 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
71
10
0
25 Mar 2019
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
92
38
0
06 Dec 2018
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
72
186
0
20 Nov 2018
1