ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.07105
  4. Cited By
Non-asymptotic bounds for sampling algorithms without log-concavity
v1v2v3 (latest)

Non-asymptotic bounds for sampling algorithms without log-concavity

21 August 2018
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
ArXiv (abs)PDFHTML

Papers citing "Non-asymptotic bounds for sampling algorithms without log-concavity"

27 / 27 papers shown
Title
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
175
3
0
28 Jan 2025
Asynchronous Bayesian Learning over a Network
Asynchronous Bayesian Learning over a Network
Kinjal Bhar
H. Bai
Jemin George
Carl E. Busart
FedML
56
0
0
16 Nov 2022
Fisher information lower bounds for sampling
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
115
15
0
05 Oct 2022
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
Lei Li
Yuliang Wang
95
11
0
19 Jul 2022
Non-asymptotic convergence bounds for modified tamed unadjusted Langevin
  algorithm in non-convex setting
Non-asymptotic convergence bounds for modified tamed unadjusted Langevin algorithm in non-convex setting
Ariel Neufeld
Matthew Ng Cheng En
Ying Zhang
85
12
0
06 Jul 2022
Convergence for score-based generative modeling with polynomial
  complexity
Convergence for score-based generative modeling with polynomial complexity
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
80
140
0
13 Jun 2022
Constrained Langevin Algorithms with L-mixing External Random Variables
Constrained Langevin Algorithms with L-mixing External Random Variables
Yu Zheng
Andrew G. Lamperski
83
6
0
27 May 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity
  Guarantees for Langevin Monte Carlo
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
108
65
0
10 Feb 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
83
5
0
20 Jan 2022
Unadjusted Langevin algorithm for sampling a mixture of weakly smooth potentials
D. Nguyen
58
5
0
17 Dec 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high
  dimension
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
88
21
0
02 Aug 2021
Wasserstein distance estimates for the distributions of numerical
  approximations to ergodic stochastic differential equations
Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations
J. Sanz-Serna
K. Zygalakis
71
23
0
26 Apr 2021
Projected Stochastic Gradient Langevin Algorithms for Constrained
  Sampling and Non-Convex Learning
Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning
Andrew G. Lamperski
42
28
0
22 Dec 2020
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet
  Log-Sobolev
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev
Tianlin Li
Qi Lei
Ioannis Panageas
65
20
0
11 Oct 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
88
77
0
27 May 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
97
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
71
66
0
11 Feb 2020
Mean-Field Neural ODEs via Relaxed Optimal Control
Mean-Field Neural ODEs via Relaxed Optimal Control
Jean-François Jabir
D. vSivska
Lukasz Szpruch
MLT
141
38
0
11 Dec 2019
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under
  local conditions in nonconvex optimization
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
104
47
0
04 Oct 2019
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal
  Rates without Convexity
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal Rates without Convexity
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
68
68
0
25 Jul 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
81
139
0
16 Jul 2019
Bounding the error of discretized Langevin algorithms for non-strongly
  log-concave targets
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets
A. Dalalyan
Avetik G. Karagulyan
L. Riou-Durand
111
39
0
20 Jun 2019
On stochastic gradient Langevin dynamics with dependent data streams:
  the fully non-convex case
On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case
N. H. Chau
'. Moulines
Miklós Rásonyi
Sotirios Sabanis
Ying Zhang
94
41
0
30 May 2019
Convergence of diffusions and their discretizations: from continuous to
  discrete processes and back
Convergence of diffusions and their discretizations: from continuous to discrete processes and back
Valentin De Bortoli
Alain Durmus
60
22
0
22 Apr 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
71
10
0
25 Mar 2019
On stochastic gradient Langevin dynamics with dependent data streams in
  the logconcave case
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
92
38
0
06 Dec 2018
Sampling Can Be Faster Than Optimization
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
72
186
0
20 Nov 2018
1