Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.07675
Cited By
Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images
23 August 2018
Michele Volpi
D. Tuia
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images"
8 / 8 papers shown
Title
GeoGround: A Unified Large Vision-Language Model for Remote Sensing Visual Grounding
Yimiao Zhou
Mengcheng Lan
Xiang Li
Yiping Ke
Yiping Ke
Xue Jiang
Qingyun Li
Xue Yang
Wayne Zhang
ObjD
VLM
256
7
0
16 Nov 2024
A hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases
Chun Yang
Franz Rottensteiner
Christian Heipke
96
20
0
14 Apr 2021
Robust building footprint extraction from big multi-sensor data using deep competition network
M. Khoshboresh-Masouleh
M. Saradjian
103
9
0
04 Nov 2020
More Diverse Means Better: Multimodal Deep Learning Meets Remote Sensing Imagery Classification
Danfeng Hong
Lianru Gao
Naoto Yokoya
Jing Yao
Jocelyn Chanussot
Q. Du
Bing Zhang
83
969
0
12 Aug 2020
Boundary Regularized Building Footprint Extraction From Satellite Images Using Deep Neural Network
Kang Zhao
Muhammad Kamran
Gunho Sohn
116
11
0
23 Jun 2020
Geometry-Aware Segmentation of Remote Sensing Images via Implicit Height Estimation
Xiang Li
Lingjing Wang
Yi Fang
52
6
0
10 Jun 2020
Building Footprint Generation by IntegratingConvolution Neural Network with Feature PairwiseConditional Random Field (FPCRF)
Qingyu Li
Yilei Shi
Xin Huang
Xiaoxiang Zhu
92
65
0
11 Feb 2020
Understanding urban landuse from the above and ground perspectives: a deep learning, multimodal solution
Shivangi Srivastava
John E. Vargas-Muñoz
D. Tuia
94
138
0
05 May 2019
1