ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.04618
  4. Cited By
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for
  Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and
  Momentum-Based Acceleration
v1v2v3v4 (latest)

Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration

12 September 2018
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
ArXiv (abs)PDFHTML

Papers citing "Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration"

19 / 19 papers shown
Title
AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
  Rate and Momentum for Training Deep Neural Networks
AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning Rate and Momentum for Training Deep Neural Networks
Hao Sun
Li Shen
Qihuang Zhong
Liang Ding
Shi-Yong Chen
Jingwei Sun
Jing Li
Guangzhong Sun
Dacheng Tao
98
34
0
01 Mar 2023
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity --
  the Strongly Convex Case
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity -- the Strongly Convex Case
Tim Johnston
Iosif Lytras
Sotirios Sabanis
79
9
0
19 Jan 2023
Nonlinear Sufficient Dimension Reduction with a Stochastic Neural
  Network
Nonlinear Sufficient Dimension Reduction with a Stochastic Neural Network
Siqi Liang
Y. Sun
F. Liang
BDL
71
11
0
09 Oct 2022
Global convergence of optimized adaptive importance samplers
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
103
7
0
02 Jan 2022
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian
  Monte Carlo
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo
Vyacheslav Kungurtsev
Adam D. Cobb
T. Javidi
Brian Jalaian
88
4
0
15 Jul 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
72
17
0
06 May 2021
The shifted ODE method for underdamped Langevin MCMC
The shifted ODE method for underdamped Langevin MCMC
James Foster
Terry Lyons
Harald Oberhauser
91
16
0
10 Jan 2021
State-Dependent Temperature Control for Langevin Diffusions
State-Dependent Temperature Control for Langevin Diffusions
Xuefeng Gao
Z. Xu
X. Zhou
94
28
0
15 Nov 2020
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
101
36
0
19 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
79
73
0
07 Oct 2020
Quantum algorithms for escaping from saddle points
Quantum algorithms for escaping from saddle points
Chenyi Zhang
Jiaqi Leng
Tongyang Li
86
20
0
20 Jul 2020
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Umut Simsekli
Ozan Sener
George Deligiannidis
Murat A. Erdogdu
86
56
0
16 Jun 2020
The Heavy-Tail Phenomenon in SGD
The Heavy-Tail Phenomenon in SGD
Mert Gurbuzbalaban
Umut Simsekli
Lingjiong Zhu
59
130
0
08 Jun 2020
AMAGOLD: Amortized Metropolis Adjustment for Efficient Stochastic
  Gradient MCMC
AMAGOLD: Amortized Metropolis Adjustment for Efficient Stochastic Gradient MCMC
Ruqi Zhang
A. Feder Cooper
Christopher De Sa
81
18
0
29 Feb 2020
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum
  under Heavy-Tailed Gradient Noise
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise
Umut Simsekli
Lingjiong Zhu
Yee Whye Teh
Mert Gurbuzbalaban
82
50
0
13 Feb 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
97
17
0
13 Feb 2020
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
71
10
0
25 Mar 2019
Understanding the Acceleration Phenomenon via High-Resolution
  Differential Equations
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
68
264
0
21 Oct 2018
Robust Accelerated Gradient Methods for Smooth Strongly Convex Functions
Robust Accelerated Gradient Methods for Smooth Strongly Convex Functions
N. Aybat
Alireza Fallah
Mert Gurbuzbalaban
Asuman Ozdaglar
77
59
0
27 May 2018
1