ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.05288
  4. Cited By
Characterizing Variation in Crowd-Sourced Data for Training Neural
  Language Generators to Produce Stylistically Varied Outputs

Characterizing Variation in Crowd-Sourced Data for Training Neural Language Generators to Produce Stylistically Varied Outputs

14 September 2018
Juraj Juraska
M. Walker
ArXivPDFHTML

Papers citing "Characterizing Variation in Crowd-Sourced Data for Training Neural Language Generators to Produce Stylistically Varied Outputs"

3 / 3 papers shown
Title
ViGGO: A Video Game Corpus for Data-To-Text Generation in Open-Domain
  Conversation
ViGGO: A Video Game Corpus for Data-To-Text Generation in Open-Domain Conversation
Juraj Juraska
Kevin K. Bowden
M. Walker
19
41
0
26 Oct 2019
Evaluating the State-of-the-Art of End-to-End Natural Language
  Generation: The E2E NLG Challenge
Evaluating the State-of-the-Art of End-to-End Natural Language Generation: The E2E NLG Challenge
Ondrej Dusek
Jekaterina Novikova
Verena Rieser
ELM
23
231
0
23 Jan 2019
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,743
0
26 Sep 2016
1