ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.07599
  4. Cited By
Sparsified SGD with Memory

Sparsified SGD with Memory

20 September 2018
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
ArXivPDFHTML

Papers citing "Sparsified SGD with Memory"

41 / 141 papers shown
Title
CatFedAvg: Optimising Communication-efficiency and Classification
  Accuracy in Federated Learning
CatFedAvg: Optimising Communication-efficiency and Classification Accuracy in Federated Learning
D. Sarkar
Sumit Rai
Ankur Narang
FedML
18
2
0
14 Nov 2020
Sparse Communication for Training Deep Networks
Sparse Communication for Training Deep Networks
Negar Foroutan
Martin Jaggi
FedML
22
16
0
19 Sep 2020
Communication Efficient Distributed Learning with Censored, Quantized,
  and Generalized Group ADMM
Communication Efficient Distributed Learning with Censored, Quantized, and Generalized Group ADMM
Chaouki Ben Issaid
Anis Elgabli
Jihong Park
M. Bennis
Mérouane Debbah
FedML
23
13
0
14 Sep 2020
On Communication Compression for Distributed Optimization on
  Heterogeneous Data
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
45
22
0
04 Sep 2020
Periodic Stochastic Gradient Descent with Momentum for Decentralized
  Training
Periodic Stochastic Gradient Descent with Momentum for Decentralized Training
Hongchang Gao
Heng-Chiao Huang
15
25
0
24 Aug 2020
PowerGossip: Practical Low-Rank Communication Compression in
  Decentralized Deep Learning
PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
FedML
9
54
0
04 Aug 2020
On the Convergence of SGD with Biased Gradients
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
6
83
0
31 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp
  Guarantees
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
30
271
0
02 Jul 2020
rTop-k: A Statistical Estimation Approach to Distributed SGD
rTop-k: A Statistical Estimation Approach to Distributed SGD
L. P. Barnes
Huseyin A. Inan
Berivan Isik
Ayfer Özgür
19
65
0
21 May 2020
A Federated Learning Framework for Healthcare IoT devices
A Federated Learning Framework for Healthcare IoT devices
Binhang Yuan
Song Ge
Wenhui Xing
FedML
OOD
15
64
0
07 May 2020
Communication-Efficient Distributed Stochastic AUC Maximization with
  Deep Neural Networks
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
Zhishuai Guo
Mingrui Liu
Zhuoning Yuan
Li Shen
Wei Liu
Tianbao Yang
30
42
0
05 May 2020
Detached Error Feedback for Distributed SGD with Random Sparsification
Detached Error Feedback for Distributed SGD with Random Sparsification
An Xu
Heng-Chiao Huang
36
9
0
11 Apr 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
41
491
0
23 Mar 2020
Communication optimization strategies for distributed deep neural
  network training: A survey
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
22
12
0
06 Mar 2020
Acceleration for Compressed Gradient Descent in Distributed and
  Federated Optimization
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
21
133
0
26 Feb 2020
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
Richeng Jin
Yufan Huang
Xiaofan He
H. Dai
Tianfu Wu
FedML
22
63
0
25 Feb 2020
Distributed Non-Convex Optimization with Sublinear Speedup under
  Intermittent Client Availability
Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability
Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Zhihua Wu
FedML
36
37
0
18 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
11
20
0
28 Jan 2020
Sparse Weight Activation Training
Sparse Weight Activation Training
Md Aamir Raihan
Tor M. Aamodt
32
72
0
07 Jan 2020
Understanding Top-k Sparsification in Distributed Deep Learning
Understanding Top-k Sparsification in Distributed Deep Learning
S. Shi
X. Chu
Ka Chun Cheung
Simon See
22
93
0
20 Nov 2019
Layer-wise Adaptive Gradient Sparsification for Distributed Deep
  Learning with Convergence Guarantees
Layer-wise Adaptive Gradient Sparsification for Distributed Deep Learning with Convergence Guarantees
S. Shi
Zhenheng Tang
Qiang-qiang Wang
Kaiyong Zhao
X. Chu
11
22
0
20 Nov 2019
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated
  Learning
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning
XINYAN DAI
Xiao Yan
Kaiwen Zhou
Han Yang
K. K. Ng
James Cheng
Yu Fan
FedML
8
47
0
12 Nov 2019
On-Device Machine Learning: An Algorithms and Learning Theory
  Perspective
On-Device Machine Learning: An Algorithms and Learning Theory Perspective
Sauptik Dhar
Junyao Guo
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
17
141
0
02 Nov 2019
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized
  Machine Learning
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
Chaouki Ben Issaid
M. Bennis
Vaneet Aggarwal
19
67
0
23 Oct 2019
Abnormal Client Behavior Detection in Federated Learning
Abnormal Client Behavior Detection in Federated Learning
Suyi Li
Yong Cheng
Yang Liu
Wei Wang
Tianjian Chen
AAML
6
134
0
22 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task
  Optimization under Privacy Constraints
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
40
965
0
04 Oct 2019
Gradient Descent with Compressed Iterates
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
16
22
0
10 Sep 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
21
112
0
09 Jul 2019
On the Convergence of FedAvg on Non-IID Data
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
35
2,278
0
04 Jul 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed
  Optimization
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
17
316
0
31 May 2019
Natural Compression for Distributed Deep Learning
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
150
0
27 May 2019
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with
  Edge Computing
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing
Zhi Zhou
Xu Chen
En Li
Liekang Zeng
Ke Luo
Junshan Zhang
19
1,420
0
24 May 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
18
1,330
0
07 Mar 2019
On Maintaining Linear Convergence of Distributed Learning and
  Optimization under Limited Communication
On Maintaining Linear Convergence of Distributed Learning and Optimization under Limited Communication
Sindri Magnússon
H. S. Ghadikolaei
Na Li
14
81
0
26 Feb 2019
Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and
  Projection Free
Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and Projection Free
Mingrui Zhang
Lin Chen
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
16
8
0
17 Feb 2019
A Distributed Synchronous SGD Algorithm with Global Top-$k$
  Sparsification for Low Bandwidth Networks
A Distributed Synchronous SGD Algorithm with Global Top-kkk Sparsification for Low Bandwidth Networks
S. Shi
Qiang-qiang Wang
Kaiyong Zhao
Zhenheng Tang
Yuxin Wang
Xiang Huang
Xiaowen Chu
32
134
0
14 Jan 2019
Double Quantization for Communication-Efficient Distributed Optimization
Double Quantization for Communication-Efficient Distributed Optimization
Yue Yu
Jiaxiang Wu
Longbo Huang
MQ
19
57
0
25 May 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
41
1,043
0
24 May 2018
Sparse Binary Compression: Towards Distributed Deep Learning with
  minimal Communication
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
11
210
0
22 May 2018
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
124
259
0
10 Dec 2012
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
Previous
123