Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.07599
Cited By
Sparsified SGD with Memory
20 September 2018
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sparsified SGD with Memory"
41 / 141 papers shown
Title
CatFedAvg: Optimising Communication-efficiency and Classification Accuracy in Federated Learning
D. Sarkar
Sumit Rai
Ankur Narang
FedML
18
2
0
14 Nov 2020
Sparse Communication for Training Deep Networks
Negar Foroutan
Martin Jaggi
FedML
22
16
0
19 Sep 2020
Communication Efficient Distributed Learning with Censored, Quantized, and Generalized Group ADMM
Chaouki Ben Issaid
Anis Elgabli
Jihong Park
M. Bennis
Mérouane Debbah
FedML
23
13
0
14 Sep 2020
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
45
22
0
04 Sep 2020
Periodic Stochastic Gradient Descent with Momentum for Decentralized Training
Hongchang Gao
Heng-Chiao Huang
15
25
0
24 Aug 2020
PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
FedML
9
54
0
04 Aug 2020
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
6
83
0
31 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
30
271
0
02 Jul 2020
rTop-k: A Statistical Estimation Approach to Distributed SGD
L. P. Barnes
Huseyin A. Inan
Berivan Isik
Ayfer Özgür
19
65
0
21 May 2020
A Federated Learning Framework for Healthcare IoT devices
Binhang Yuan
Song Ge
Wenhui Xing
FedML
OOD
15
64
0
07 May 2020
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
Zhishuai Guo
Mingrui Liu
Zhuoning Yuan
Li Shen
Wei Liu
Tianbao Yang
30
42
0
05 May 2020
Detached Error Feedback for Distributed SGD with Random Sparsification
An Xu
Heng-Chiao Huang
36
9
0
11 Apr 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
41
491
0
23 Mar 2020
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
22
12
0
06 Mar 2020
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
21
133
0
26 Feb 2020
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
Richeng Jin
Yufan Huang
Xiaofan He
H. Dai
Tianfu Wu
FedML
22
63
0
25 Feb 2020
Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability
Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Zhihua Wu
FedML
36
37
0
18 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
11
20
0
28 Jan 2020
Sparse Weight Activation Training
Md Aamir Raihan
Tor M. Aamodt
32
72
0
07 Jan 2020
Understanding Top-k Sparsification in Distributed Deep Learning
S. Shi
X. Chu
Ka Chun Cheung
Simon See
22
93
0
20 Nov 2019
Layer-wise Adaptive Gradient Sparsification for Distributed Deep Learning with Convergence Guarantees
S. Shi
Zhenheng Tang
Qiang-qiang Wang
Kaiyong Zhao
X. Chu
11
22
0
20 Nov 2019
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning
XINYAN DAI
Xiao Yan
Kaiwen Zhou
Han Yang
K. K. Ng
James Cheng
Yu Fan
FedML
8
47
0
12 Nov 2019
On-Device Machine Learning: An Algorithms and Learning Theory Perspective
Sauptik Dhar
Junyao Guo
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
17
141
0
02 Nov 2019
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
Chaouki Ben Issaid
M. Bennis
Vaneet Aggarwal
19
67
0
23 Oct 2019
Abnormal Client Behavior Detection in Federated Learning
Suyi Li
Yong Cheng
Yang Liu
Wei Wang
Tianjian Chen
AAML
6
134
0
22 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
40
965
0
04 Oct 2019
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
16
22
0
10 Sep 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
21
112
0
09 Jul 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
35
2,278
0
04 Jul 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
17
316
0
31 May 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
150
0
27 May 2019
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing
Zhi Zhou
Xu Chen
En Li
Liekang Zeng
Ke Luo
Junshan Zhang
19
1,420
0
24 May 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
18
1,330
0
07 Mar 2019
On Maintaining Linear Convergence of Distributed Learning and Optimization under Limited Communication
Sindri Magnússon
H. S. Ghadikolaei
Na Li
14
81
0
26 Feb 2019
Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and Projection Free
Mingrui Zhang
Lin Chen
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
16
8
0
17 Feb 2019
A Distributed Synchronous SGD Algorithm with Global Top-
k
k
k
Sparsification for Low Bandwidth Networks
S. Shi
Qiang-qiang Wang
Kaiyong Zhao
Zhenheng Tang
Yuxin Wang
Xiang Huang
Xiaowen Chu
32
134
0
14 Jan 2019
Double Quantization for Communication-Efficient Distributed Optimization
Yue Yu
Jiaxiang Wu
Longbo Huang
MQ
19
57
0
25 May 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
41
1,043
0
24 May 2018
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
11
210
0
22 May 2018
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
124
259
0
10 Dec 2012
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
Previous
1
2
3