Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.07609
Cited By
Machine Learning for semi linear PDEs
20 September 2018
Quentin Chan-Wai-Nam
Joseph Mikael
X. Warin
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Machine Learning for semi linear PDEs"
19 / 19 papers shown
Title
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
53
0
0
02 May 2025
Solution of FPK Equation for Stochastic Dynamics Subjected to Additive Gaussian Noise via Deep Learning Approach
Amir H. Khodabakhsh
S. Pourtakdoust
13
6
0
08 Nov 2023
EPINN-NSE: Enhanced Physics-Informed Neural Networks for Solving Navier-Stokes Equations
Ayoub Farkane
Mounir Ghogho
M. Oudani
M. Boutayeb
PINN
20
5
0
07 Apr 2023
Simultaneous upper and lower bounds of American option prices with hedging via neural networks
Ivan Guo
Nicolas Langrené
Jiahao Wu
17
0
0
24 Feb 2023
Physics informed WNO
N. N.
Tapas Tripura
S. Chakraborty
25
28
0
12 Feb 2023
Mean-field neural networks: learning mappings on Wasserstein space
H. Pham
X. Warin
21
13
0
27 Oct 2022
A Deep Learning Approach for the solution of Probability Density Evolution of Stochastic Systems
S. Pourtakdoust
Amir H. Khodabakhsh
30
12
0
05 Jul 2022
Convergence of a robust deep FBSDE method for stochastic control
Kristoffer Andersson
Adam Andersson
C. Oosterlee
27
19
0
18 Jan 2022
Cell-average based neural network method for hyperbolic and parabolic partial differential equations
Changxin Qiu
Jue Yan
14
10
0
02 Jul 2021
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
8
22
0
07 May 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Solving non-linear Kolmogorov equations in large dimensions by using deep learning: a numerical comparison of discretization schemes
Raffaele Marino
N. Macris
12
16
0
09 Dec 2020
Space-time deep neural network approximations for high-dimensional partial differential equations
F. Hornung
Arnulf Jentzen
Diyora Salimova
AI4CE
14
19
0
03 Jun 2020
Differential Machine Learning
B. Huge
Antoine Savine
13
32
0
05 May 2020
Uniform error estimates for artificial neural network approximations for heat equations
Lukas Gonon
Philipp Grohs
Arnulf Jentzen
David Kofler
David Siska
13
34
0
20 Nov 2019
Space-time error estimates for deep neural network approximations for differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philipp Zimmermann
19
33
0
11 Aug 2019
Deep splitting method for parabolic PDEs
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
21
125
0
08 Jul 2019
Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications
Achref Bachouch
Côme Huré
N. Langrené
H. Pham
8
84
0
13 Dec 2018
Unbiased deep solvers for linear parametric PDEs
Marc Sabate Vidales
David Siska
Lukasz Szpruch
OOD
24
7
0
11 Oct 2018
1