Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.10486
Cited By
nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation
27 September 2018
Fabian Isensee
Jens Petersen
André Klein
David Zimmerer
Paul F. Jaeger
Simon A. A. Kohl
Jakob Wasserthal
Gregor Koehler
T. Norajitra
Sebastian J. Wirkert
Klaus H. Maier-Hein
SSeg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation"
16 / 66 papers shown
Title
UXNet: Searching Multi-level Feature Aggregation for 3D Medical Image Segmentation
Yuanfeng Ji
Ruimao Zhang
Zhuguo Li
Jiamin Ren
Shaoting Zhang
Ping Luo
3DPC
6
23
0
16 Sep 2020
User-Guided Domain Adaptation for Rapid Annotation from User Interactions: A Study on Pathological Liver Segmentation
Ashwin Raju
Zhanghexuan Ji
Chi-Tung Cheng
Jinzheng Cai
Junzhou Huang
Jing Xiao
Le Lu
Chien-Hung Liao
Adam P. Harrison
20
13
0
05 Sep 2020
Robust Pancreatic Ductal Adenocarcinoma Segmentation with Multi-Institutional Multi-Phase Partially-Annotated CT Scans
Ling Zhang
Yu Shi
Jiawen Yao
Yun Bian
Kai Cao
D. Jin
Jing Xiao
Le Lu
16
20
0
24 Aug 2020
LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation
Wentao Zhu
Can Zhao
Wenqi Li
H. Roth
Ziyue Xu
Daguang Xu
3DV
16
18
0
22 Jun 2020
Searching Learning Strategy with Reinforcement Learning for 3D Medical Image Segmentation
Dong Yang
H. Roth
Ziyue Xu
Fausto Milletari
Ling Zhang
Daguang Xu
17
45
0
10 Jun 2020
Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem
J. Hofmanninger
F. Prayer
Jeanny Pan
Sebastian Rohrich
H. Prosch
Georg Langs
22
46
0
31 Jan 2020
Penalizing small errors using an Adaptive Logarithmic Loss
Chaitanya Kaul
Nick E. Pears
Hang Dai
Roderick Murray-Smith
S. Manandhar
14
9
0
22 Oct 2019
MIScnn: A Framework for Medical Image Segmentation with Convolutional Neural Networks and Deep Learning
Dominik Muller
Frank Kramer
12
116
0
21 Oct 2019
Deep Semantic Segmentation of Natural and Medical Images: A Review
Saeid Asgari Taghanaki
Kumar Abhishek
Joseph Paul Cohen
Julien Cohen-Adad
Ghassan Hamarneh
SSeg
VLM
31
666
0
16 Oct 2019
3D U
2
^2
2
-Net: A 3D Universal U-Net for Multi-Domain Medical Image Segmentation
Chao Huang
Hu Han
Qingsong Yao
Shankuan Zhu
S. Kevin Zhou
OOD
SSeg
19
71
0
04 Sep 2019
Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels
Felix J. S. Bragman
Ryutaro Tanno
Sebastien Ourselin
Daniel C. Alexander
M. Jorge Cardoso
11
86
0
26 Aug 2019
Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems
Anna Kuzina
Evgenii Egorov
Evgeny Burnaev
MedIm
13
19
0
15 Aug 2019
Domain specific cues improve robustness of deep learning based segmentation of ct volumes
Marie Kloenne
Sebastian Niehaus
L. Lampe
A. Merola
J. Reinelt
Ingo Roeder
N. Scherf
OOD
12
1
0
23 Jul 2019
Scalable Neural Architecture Search for 3D Medical Image Segmentation
Sungwoong Kim
Ildoo Kim
Sungbin Lim
Woonhyuk Baek
Chiheon Kim
Hyungjoon Cho
Boogeon Yoon
Taesup Kim
11
74
0
13 Jun 2019
Automated Design of Deep Learning Methods for Biomedical Image Segmentation
Fabian Isensee
Paul F. Jäger
Simon A. A. Kohl
Jens Petersen
Klaus H. Maier-Hein
3DV
SSeg
13
171
0
17 Apr 2019
Brain Tumor Segmentation using an Ensemble of 3D U-Nets and Overall Survival Prediction using Radiomic Features
Xue Feng
Nicholas J. Tustison
C. Meyer
38
224
0
03 Dec 2018
Previous
1
2