Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.00113
Cited By
Predicting the Generalization Gap in Deep Networks with Margin Distributions
28 September 2018
Yiding Jiang
Dilip Krishnan
H. Mobahi
Samy Bengio
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Predicting the Generalization Gap in Deep Networks with Margin Distributions"
48 / 48 papers shown
Title
Early Stopping Against Label Noise Without Validation Data
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
104
16
0
11 Feb 2025
Multi-Instance Partial-Label Learning with Margin Adjustment
Wei Tang
Yin-Fang Yang
Zhaofei Wang
Feiyu Xiong
Hao Fei
73
0
0
22 Jan 2025
Understanding Generalization in Quantum Machine Learning with Margins
Tak Hur
Daniel K. Park
AI4CE
34
1
0
11 Nov 2024
Towards Scalable and Versatile Weight Space Learning
Konstantin Schurholt
Michael W. Mahoney
Damian Borth
50
15
0
14 Jun 2024
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard
Rémi Emonet
Amaury Habrard
Emilie Morvant
Valentina Zantedeschi
39
3
0
19 Feb 2024
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Renchunzi Xie
Ambroise Odonnat
Vasilii Feofanov
I. Redko
Jianfeng Zhang
Bo An
UQCV
80
1
0
17 Jan 2024
An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
Hyenkyun Woo
20
0
0
26 Dec 2023
Input margins can predict generalization too
Coenraad Mouton
Marthinus W. Theunissen
Marelie Hattingh Davel
AAML
UQCV
AI4CE
23
3
0
29 Aug 2023
MarginMatch: Improving Semi-Supervised Learning with Pseudo-Margins
Tiberiu Sosea
Cornelia Caragea
16
12
0
17 Aug 2023
Deep neural networks architectures from the perspective of manifold learning
German Magai
AAML
AI4CE
24
6
0
06 Jun 2023
Sparsified Model Zoo Twins: Investigating Populations of Sparsified Neural Network Models
D. Honegger
Konstantin Schurholt
Damian Borth
31
4
0
26 Apr 2023
Permutation Equivariant Neural Functionals
Allan Zhou
Kaien Yang
Kaylee Burns
Adriano Cardace
Yiding Jiang
Samuel Sokota
J. Zico Kolter
Chelsea Finn
35
47
0
27 Feb 2023
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi
Krikamol Muandet
Simon Kornblith
Bernhard Schölkopf
Been Kim
FAtt
CML
37
14
0
13 Dec 2022
A Statistical Model for Predicting Generalization in Few-Shot Classification
Yassir Bendou
Vincent Gripon
Bastien Pasdeloup
Lukas Mauch
Stefan Uhlich
Fabien Cardinaux
G. B. Hacene
Javier Alonso García
21
2
0
13 Dec 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Multi-Object Navigation with dynamically learned neural implicit representations
Pierre Marza
L. Matignon
Olivier Simonin
Christian Wolf
35
23
0
11 Oct 2022
Why neural networks find simple solutions: the many regularizers of geometric complexity
Benoit Dherin
Michael Munn
M. Rosca
David Barrett
55
31
0
27 Sep 2022
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
63
11
0
21 Sep 2022
Membership Inference Attacks and Generalization: A Causal Perspective
Teodora Baluta
Shiqi Shen
S. Hitarth
Shruti Tople
Prateek Saxena
OOD
MIACV
40
18
0
18 Sep 2022
Improving Self-supervised Learning for Out-of-distribution Task via Auxiliary Classifier
Harshita Boonlia
T. Dam
Md Meftahul Ferdaus
S. Anavatti
Ankan Mullick
OODD
16
4
0
07 Sep 2022
On the Strong Correlation Between Model Invariance and Generalization
Weijian Deng
Stephen Gould
Liang Zheng
OOD
32
16
0
14 Jul 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
25
74
0
08 Jun 2022
Delving into the Openness of CLIP
Shuhuai Ren
Lei Li
Xuancheng Ren
Guangxiang Zhao
Xu Sun
VLM
25
13
0
04 Jun 2022
Investigating Generalization by Controlling Normalized Margin
Alexander R. Farhang
Jeremy Bernstein
Kushal Tirumala
Yang Liu
Yisong Yue
31
6
0
08 May 2022
BERTops: Studying BERT Representations under a Topological Lens
Jatin Chauhan
Manohar Kaul
24
3
0
02 May 2022
CONTINUER: Maintaining Distributed DNN Services During Edge Failures
A. Majeed
Peter Kilpatrick
I. Spence
Blesson Varghese
14
0
0
25 Apr 2022
Topology and geometry of data manifold in deep learning
German Magai
A. Ayzenberg
AAML
21
11
0
19 Apr 2022
Evaluating natural language processing models with generalization metrics that do not need access to any training or testing data
Yaoqing Yang
Ryan Theisen
Liam Hodgkinson
Joseph E. Gonzalez
Kannan Ramchandran
Charles H. Martin
Michael W. Mahoney
88
17
0
06 Feb 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations
Xiaoxiao Sun
Yunzhong Hou
Hongdong Li
Liang Zheng
13
11
0
01 Dec 2021
Hyper-Representations: Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction
Konstantin Schurholt
Dimche Kostadinov
Damian Borth
SSL
29
14
0
28 Oct 2021
In Search of Probeable Generalization Measures
Jonathan Jaegerman
Khalil Damouni
M. M. Ankaralı
Konstantinos N. Plataniotis
24
2
0
23 Oct 2021
Graphs as Tools to Improve Deep Learning Methods
Carlos Lassance
Myriam Bontonou
Mounia Hamidouche
Bastien Pasdeloup
Lucas Drumetz
Vincent Gripon
GNN
AI4CE
AAML
47
0
0
08 Oct 2021
Exploring the Limits of Large Scale Pre-training
Samira Abnar
Mostafa Dehghani
Behnam Neyshabur
Hanie Sedghi
AI4CE
60
114
0
05 Oct 2021
Predicting with Confidence on Unseen Distributions
Devin Guillory
Vaishaal Shankar
Sayna Ebrahimi
Trevor Darrell
Ludwig Schmidt
UQCV
OOD
20
116
0
07 Jul 2021
Deep Learning Through the Lens of Example Difficulty
R. Baldock
Hartmut Maennel
Behnam Neyshabur
47
156
0
17 Jun 2021
What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?
Weijian Deng
Stephen Gould
Liang Zheng
39
62
0
10 Jun 2021
Generalization bounds via distillation
Daniel J. Hsu
Ziwei Ji
Matus Telgarsky
Lan Wang
FedML
17
32
0
12 Apr 2021
NeurIPS 2020 Competition: Predicting Generalization in Deep Learning
Yiding Jiang
Pierre Foret
Scott Yak
Daniel M. Roy
H. Mobahi
Gintare Karolina Dziugaite
Samy Bengio
Suriya Gunasekar
Isabelle M Guyon
Behnam Neyshabur Google Research
OOD
24
55
0
14 Dec 2020
Predicting Generalization in Deep Learning via Local Measures of Distortion
Abhejit Rajagopal
Vamshi C. Madala
S. Chandrasekaran
P. Larson
8
1
0
13 Dec 2020
Semantically Robust Unpaired Image Translation for Data with Unmatched Semantics Statistics
Zhiwei Jia
Bodi Yuan
Kangkang Wang
Hong Wu
David Clifford
Zhiqiang Yuan
Hao Su
VLM
44
21
0
09 Dec 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Analysis of Generalizability of Deep Neural Networks Based on the Complexity of Decision Boundary
Shuyue Guan
Murray H. Loew
27
25
0
16 Sep 2020
An Investigation of the Weight Space to Monitor the Training Progress of Neural Networks
Konstantin Schurholt
Damian Borth
29
3
0
18 Jun 2020
Directional convergence and alignment in deep learning
Ziwei Ji
Matus Telgarsky
17
163
0
11 Jun 2020
Predicting Neural Network Accuracy from Weights
Thomas Unterthiner
Daniel Keysers
Sylvain Gelly
Olivier Bousquet
Ilya O. Tolstikhin
30
101
0
26 Feb 2020
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
19
34
0
05 Feb 2020
Information-Theoretic Local Minima Characterization and Regularization
Zhiwei Jia
Hao Su
27
19
0
19 Nov 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
36
85
0
09 Oct 2019
1