Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1810.00656
Cited By
v1
v2
v3
v4
v5 (latest)
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
1 October 2018
Patrick Schwab
Lorenz Linhardt
W. Karlen
CML
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks"
50 / 50 papers shown
Title
CausalKANs: interpretable treatment effect estimation with Kolmogorov-Arnold networks
Alejandro Almodóvar
Patricia A. Apellániz
Santiago Zazo
J. Parras
CML
194
0
0
26 Sep 2025
KANITE: Kolmogorov-Arnold Networks for ITE estimation
Eshan Mehendale
Abhinav Thorat
Ravi Kolla
N. Pedanekar
CML
269
2
0
18 Mar 2025
Learning Counterfactual Outcomes Under Rank Preservation
Peng Wu
Haoxuan Li
Chunyuan Zheng
Yan Zeng
Jiawei Chen
Yang Liu
Ruocheng Guo
Jianchao Tan
249
1
0
10 Feb 2025
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Lokesh Nagalapatti
Pranava Singhal
Avishek Ghosh
Sunita Sarawagi
CML
215
0
0
07 Feb 2025
Orthogonal Representation Learning for Estimating Causal Quantities
Valentyn Melnychuk
Dennis Frauen
Jonas Schweisthal
Stefan Feuerriegel
CML
OOD
BDL
386
5
0
06 Feb 2025
Federated Learning for Estimating Heterogeneous Treatment Effects
Disha Makhija
Joydeep Ghosh
Yejin Kim
CML
FedML
296
3
0
27 Feb 2024
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
255
19
0
19 Nov 2023
CATE Estimation With Potential Outcome Imputation From Local Regression
Conference on Uncertainty in Artificial Intelligence (UAI), 2023
Ahmed Aloui
Juncheng Dong
Cat P. Le
Vahid Tarokh
CML
140
2
0
07 Nov 2023
Pareto Invariant Representation Learning for Multimedia Recommendation
ACM Multimedia (ACM MM), 2023
Shanshan Huang
Haoxuan Li
Qingsong Li
Chunyuan Zheng
Li Liu
CML
246
17
0
09 Aug 2023
De-confounding Representation Learning for Counterfactual Inference on Continuous Treatment via Generative Adversarial Network
Data mining and knowledge discovery (DMKD), 2023
Yonghe Zhao
Q. Huang
Haolong Zeng
Yun-Wen Pen
Huashan Sun
CML
OOD
BDL
68
2
0
24 Jul 2023
Continual Causal Inference with Incremental Observational Data
IEEE International Conference on Data Engineering (ICDE), 2023
Zhixuan Chu
Ruopeng Li
S. Rathbun
Sheng Li
CML
124
19
0
03 Mar 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
149
2
0
16 Jan 2023
Deep Causal Learning for Robotic Intelligence
Frontiers in Neurorobotics (Front. Neurorobot.), 2022
Yongqian Li
CML
190
7
0
23 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
262
15
0
07 Nov 2022
A Survey of Deep Causal Models and Their Industrial Applications
Artificial Intelligence Review (Artif Intell Rev), 2022
Zongyu Li
Xiaoning Guo
Siwei Qiang
CML
AI4CE
445
14
0
19 Sep 2022
DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect Estimation
Knowledge Discovery and Data Mining (KDD), 2022
Kailiang Zhong
Fengtong Xiao
Yan Ren
Yaorong Liang
Wenqing Yao
Xiaofeng Yang
Ling Cen
CML
132
24
0
19 Jul 2022
Improving Data-driven Heterogeneous Treatment Effect Estimation Under Structure Uncertainty
Knowledge Discovery and Data Mining (KDD), 2022
Christopher Tran
Elena Zheleva
CML
179
4
0
25 Jun 2022
Causal Balancing for Domain Generalization
International Conference on Learning Representations (ICLR), 2022
Xinyi Wang
Michael Stephen Saxon
Jiachen Li
Hongyang R. Zhang
Kun Zhang
William Yang Wang
OOD
CML
250
27
0
10 Jun 2022
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
150
2
0
06 Jun 2022
DÁRTAGNAN: Counterfactual Video Generation
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022
Hadrien Reynaud
Athanasios Vlontzos
Mischa Dombrowski
Ciarán M. Gilligan-Lee
A. Beqiri
Paul Leeson
Bernhard Kainz
VGen
CML
MedIm
171
28
0
03 Jun 2022
Multi-Task Adversarial Learning for Treatment Effect Estimation in Basket Trials
ACM Conference on Health, Inference, and Learning (ACM CHIL), 2022
Zhixuan Chu
S. Rathbun
Sheng Li
CML
139
10
0
10 Mar 2022
Covariate-Balancing-Aware Interpretable Deep Learning models for Treatment Effect Estimation
Statistics in Biosciences (Stat Biosci), 2022
Kan Chen
Qishuo Yin
Q. Long
CML
230
7
0
07 Mar 2022
Learning Infomax and Domain-Independent Representations for Causal Effect Inference with Real-World Data
SDM (SDM), 2022
Zhixuan Chu
S. Rathbun
Sheng Li
CML
OOD
120
15
0
22 Feb 2022
Evaluation Methods and Measures for Causal Learning Algorithms
IEEE Transactions on Artificial Intelligence (IEEE TAI), 2022
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CML
ELM
204
69
0
07 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
307
33
0
02 Feb 2022
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance
Gabriel Okasa
CML
173
10
0
30 Jan 2022
Deep Treatment-Adaptive Network for Causal Inference
The VLDB journal (VLDBJ), 2021
Qian Li
Zhichao Wang
Shaowu Liu
Gang Li
Guandong Xu
CML
BDL
OOD
107
13
0
27 Dec 2021
AI Assurance using Causal Inference: Application to Public Policy
A. Svetovidov
Abdul Rahman
Feras A. Batarseh
CML
73
2
0
01 Dec 2021
Offline Contextual Bandits for Wireless Network Optimization
Miguel Suau
David Lynch
Alexandros Agapitos
Derek Farrell
M. Zhou
Aleksandar Milenovic
OffRL
49
4
0
11 Nov 2021
VACA: Design of Variational Graph Autoencoders for Interventional and Counterfactual Queries
Pablo Sánchez-Martín
Miriam Rateike
Isabel Valera
CML
BDL
137
19
0
27 Oct 2021
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
International Conference on Learning Representations (ICLR), 2021
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
176
25
0
22 Oct 2021
Estimating Potential Outcome Distributions with Collaborating Causal Networks
Tianhui Zhou
William E Carson IV
David Carlson
CML
295
10
0
04 Oct 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
410
20
0
04 Sep 2021
Causal Effect Inference for Structured Treatments
Neural Information Processing Systems (NeurIPS), 2021
Jean Kaddour
Yuchen Zhu
Qi Liu
Matt J. Kusner
Ricardo M. A. Silva
CML
432
53
0
03 Jun 2021
Adaptive Multi-Source Causal Inference
Thanh Vinh Vo
Pengfei Wei
T. Hoang
Tze-Yun Leong
176
1
0
31 May 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
133
21
0
20 Mar 2021
Grab the Reins of Crowds: Estimating the Effects of Crowd Movement Guidance Using Causal Inference
Adaptive Agents and Multi-Agent Systems (AAMAS), 2021
Koh Takeuchi
Ryo Nishida
Hisashi Kashima
Masaki Onishi
CML
94
4
0
08 Feb 2021
Balance Regularized Neural Network Models for Causal Effect Estimation
Mehrdad Farajtabar
Andrew Lee
Yuanjian Feng
Vishal Gupta
Peter Dolan
Harish Chandran
M. Szummer
CML
118
7
0
23 Nov 2020
Adapting Neural Networks for Uplift Models
Mouloud Belbahri
Olivier Gandouet
Ghaith Kazma
142
12
0
30 Oct 2020
GraphITE: Estimating Individual Effects of Graph-structured Treatments
Shonosuke Harada
H. Kashima
CML
199
28
0
29 Sep 2020
Targeted VAE: Variational and Targeted Learning for Causal Inference
M. Vowels
Necati Cihan Camgöz
Richard Bowden
BDL
OOD
CML
268
9
0
28 Sep 2020
Hi-CI: Deep Causal Inference in High Dimensions
Ankit Sharma
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
Lovekesh Vig
Gautam M. Shroff
BDL
CML
230
4
0
22 Aug 2020
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution
A. Khademi
Vasant Honavar
CML
118
9
0
01 Aug 2020
Regret Minimization for Causal Inference on Large Treatment Space
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Akira Tanimoto
Tomoya Sakai
Takashi Takenouchi
H. Kashima
CML
99
10
0
10 Jun 2020
A Survey on Causal Inference
ACM Transactions on Knowledge Discovery from Data (TKDD), 2020
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
238
591
0
05 Feb 2020
Counterfactual Evaluation of Treatment Assignment Functions with Networked Observational Data
SDM (SDM), 2019
Ruocheng Guo
Jundong Li
Huan Liu
CML
OffRL
145
22
0
22 Dec 2019
Learning Individual Causal Effects from Networked Observational Data
Web Search and Data Mining (WSDM), 2019
Ruocheng Guo
Wenlin Yao
Huan Liu
CML
OOD
250
104
0
08 Jun 2019
Adapting Neural Networks for the Estimation of Treatment Effects
Neural Information Processing Systems (NeurIPS), 2019
Claudia Shi
David M. Blei
Victor Veitch
CML
387
441
0
05 Jun 2019
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
Patrick Schwab
Lorenz Linhardt
Stefan Bauer
J. M. Buhmann
W. Karlen
CML
OOD
145
145
0
03 Feb 2019
Modified Causal Forests for Estimating Heterogeneous Causal Effects
M. Lechner
CML
151
52
0
22 Dec 2018
1