ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01185
  4. Cited By
Adversarial Examples - A Complete Characterisation of the Phenomenon

Adversarial Examples - A Complete Characterisation of the Phenomenon

2 October 2018
A. Serban
E. Poll
Joost Visser
    SILM
    AAML
ArXivPDFHTML

Papers citing "Adversarial Examples - A Complete Characterisation of the Phenomenon"

10 / 10 papers shown
Title
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Robust Android Malware Detection System against Adversarial Attacks
  using Q-Learning
Robust Android Malware Detection System against Adversarial Attacks using Q-Learning
Hemant Rathore
S. K. Sahay
Piyush Nikam
Mohit Sewak
AAML
13
61
0
27 Jan 2021
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
  Adversarial Robustness
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
50
63
0
02 Mar 2020
Active Subspace of Neural Networks: Structural Analysis and Universal
  Attacks
Active Subspace of Neural Networks: Structural Analysis and Universal Attacks
Chunfeng Cui
Kaiqi Zhang
Talgat Daulbaev
Julia Gusak
Ivan V. Oseledets
Zheng-Wei Zhang
AAML
24
25
0
29 Oct 2019
Towards Robust and Stable Deep Learning Algorithms for Forward Backward
  Stochastic Differential Equations
Towards Robust and Stable Deep Learning Algorithms for Forward Backward Stochastic Differential Equations
Batuhan Güler
Alexis Laignelet
P. Parpas
OOD
18
16
0
25 Oct 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for
  Embedded Neural Networks
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
22
18
0
27 Sep 2019
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
178
932
0
21 Oct 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,835
0
08 Jul 2016
1