Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.01279
Cited By
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
1 October 2018
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network"
23 / 23 papers shown
Title
Spectral regularization for adversarially-robust representation learning
Sheng Yang
Jacob A. Zavatone-Veth
C. Pehlevan
AAML
OOD
43
0
0
27 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks
Youngkyoung Bae
Seungwoong Ha
Hawoong Jeong
73
2
0
02 Feb 2024
A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks
Yang Wang
B. Dong
Ke Xu
Haiyin Piao
Yufei Ding
Baocai Yin
Xin Yang
AAML
37
3
0
10 Oct 2023
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
24
9
0
02 Jun 2023
Detection of Uncertainty in Exceedance of Threshold (DUET): An Adversarial Patch Localizer
Terence Jie Chua
Wen-li Yu
Junfeng Zhao
AAML
UQCV
16
1
0
18 Mar 2023
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
27
35
0
10 Feb 2023
Wavelet Regularization Benefits Adversarial Training
Jun Yan
Huilin Yin
Xiaoyang Deng
Zi-qin Zhao
Wancheng Ge
Hao Zhang
Gerhard Rigoll
AAML
19
2
0
08 Jun 2022
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
23
2
0
12 Dec 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
GradDiv: Adversarial Robustness of Randomized Neural Networks via Gradient Diversity Regularization
Sungyoon Lee
Hoki Kim
Jaewook Lee
AAML
27
52
0
06 Jul 2021
Being a Bit Frequentist Improves Bayesian Neural Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
20
15
0
18 Jun 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
27
65
0
09 Apr 2021
Self-Progressing Robust Training
Minhao Cheng
Pin-Yu Chen
Sijia Liu
Shiyu Chang
Cho-Jui Hsieh
Payel Das
AAML
VLM
16
9
0
22 Dec 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
16
22
0
15 Oct 2020
Rethinking Non-idealities in Memristive Crossbars for Adversarial Robustness in Neural Networks
Abhiroop Bhattacharjee
Priyadarshini Panda
AAML
20
19
0
25 Aug 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
38
371
0
30 Apr 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
58
63
0
02 Mar 2020
Adversarial Ranking Attack and Defense
Mo Zhou
Zhenxing Niu
Le Wang
Qilin Zhang
G. Hua
30
38
0
26 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
31
277
0
24 Feb 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
27
77
0
11 Feb 2020
Assessing the Adversarial Robustness of Monte Carlo and Distillation Methods for Deep Bayesian Neural Network Classification
Meet P. Vadera
Satya Narayan Shukla
B. Jalaeian
Benjamin M. Marlin
AAML
BDL
13
6
0
07 Feb 2020
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
1