ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01539
  4. Cited By
Automated learning with a probabilistic programming language: Birch

Automated learning with a probabilistic programming language: Birch

2 October 2018
Lawrence M. Murray
Thomas B. Schon
ArXivPDFHTML

Papers citing "Automated learning with a probabilistic programming language: Birch"

10 / 10 papers shown
Title
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
24
10
0
26 Oct 2022
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
32
20
0
21 Jun 2021
Conditional independence by typing
Conditional independence by typing
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
Matthijs Vákár
27
14
0
22 Oct 2020
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
57
65
0
23 Jul 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
11
0
0
02 Mar 2020
Lazy object copy as a platform for population-based probabilistic
  programming
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
21
5
0
09 Jan 2020
Parameter elimination in particle Gibbs sampling
Parameter elimination in particle Gibbs sampling
A. Wigren
Riccardo Sven Risuleo
Lawrence M. Murray
Fredrik Lindsten
27
15
0
30 Oct 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Probabilistic programming for birth-death models of evolution using an
  alive particle filter with delayed sampling
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
J. Kudlicka
Lawrence M. Murray
F. Ronquist
Thomas B. Schon
26
10
0
10 Jul 2019
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
1