Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.01539
Cited By
Automated learning with a probabilistic programming language: Birch
2 October 2018
Lawrence M. Murray
Thomas B. Schon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automated learning with a probabilistic programming language: Birch"
10 / 10 papers shown
Title
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
24
10
0
26 Oct 2022
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
32
20
0
21 Jun 2021
Conditional independence by typing
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
Matthijs Vákár
27
14
0
22 Oct 2020
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
57
65
0
23 Jul 2020
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
11
0
0
02 Mar 2020
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
21
5
0
09 Jan 2020
Parameter elimination in particle Gibbs sampling
A. Wigren
Riccardo Sven Risuleo
Lawrence M. Murray
Fredrik Lindsten
27
15
0
30 Oct 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
J. Kudlicka
Lawrence M. Murray
F. Ronquist
Thomas B. Schon
26
10
0
10 Jul 2019
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
1