ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01875
  4. Cited By
Relaxed Quantization for Discretized Neural Networks

Relaxed Quantization for Discretized Neural Networks

3 October 2018
Christos Louizos
M. Reisser
Tijmen Blankevoort
E. Gavves
Max Welling
    MQ
ArXivPDFHTML

Papers citing "Relaxed Quantization for Discretized Neural Networks"

50 / 88 papers shown
Title
PQD: Post-training Quantization for Efficient Diffusion Models
Jiaojiao Ye
Zhen Wang
Linnan Jiang
MQ
28
0
0
03 Jan 2025
Improving Quantization-aware Training of Low-Precision Network via Block
  Replacement on Full-Precision Counterpart
Improving Quantization-aware Training of Low-Precision Network via Block Replacement on Full-Precision Counterpart
Chengting Yu
Shu Yang
Fengzhao Zhang
Hanzhi Ma
Aili Wang
Er-ping Li
MQ
77
2
0
20 Dec 2024
MPQ-Diff: Mixed Precision Quantization for Diffusion Models
Rocco Manz Maruzzelli
Basile Lewandowski
Lydia Y. Chen
DiffM
MQ
98
0
0
28 Nov 2024
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Bram Adams
Ahmed E. Hassan
VLM
34
0
0
01 Nov 2024
Temporal Feature Matters: A Framework for Diffusion Model Quantization
Temporal Feature Matters: A Framework for Diffusion Model Quantization
Yushi Huang
Ruihao Gong
Xianglong Liu
Jing Liu
Yuhang Li
Jiwen Lu
Dacheng Tao
DiffM
MQ
49
0
0
28 Jul 2024
Test-Time Model Adaptation with Only Forward Passes
Test-Time Model Adaptation with Only Forward Passes
Shuaicheng Niu
Chunyan Miao
Guohao Chen
Pengcheng Wu
Peilin Zhao
TTA
38
18
0
02 Apr 2024
Understanding Neural Network Binarization with Forward and Backward
  Proximal Quantizers
Understanding Neural Network Binarization with Forward and Backward Proximal Quantizers
Yiwei Lu
Yaoliang Yu
Xinlin Li
Vahid Partovi Nia
MQ
30
3
0
27 Feb 2024
PIPE : Parallelized Inference Through Post-Training Quantization
  Ensembling of Residual Expansions
PIPE : Parallelized Inference Through Post-Training Quantization Ensembling of Residual Expansions
Edouard Yvinec
Arnaud Dapogny
Kévin Bailly
MQ
10
0
0
27 Nov 2023
TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models
TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models
Yushi Huang
Ruihao Gong
Jing Liu
Tianlong Chen
Xianglong Liu
DiffM
MQ
17
37
0
27 Nov 2023
Efficient Neural Networks for Tiny Machine Learning: A Comprehensive
  Review
Efficient Neural Networks for Tiny Machine Learning: A Comprehensive Review
M. Lê
Pierre Wolinski
Julyan Arbel
32
8
0
20 Nov 2023
Neural Lattice Reduction: A Self-Supervised Geometric Deep Learning Approach
Neural Lattice Reduction: A Self-Supervised Geometric Deep Learning Approach
G. Marchetti
Gabriele Cesa
Kumar Pratik
Arash Behboodi
29
2
0
14 Nov 2023
RepQ: Generalizing Quantization-Aware Training for Re-Parametrized
  Architectures
RepQ: Generalizing Quantization-Aware Training for Re-Parametrized Architectures
Anastasiia Prutianova
Alexey Zaytsev
Chung-Kuei Lee
Fengyu Sun
Ivan Koryakovskiy
MQ
10
0
0
09 Nov 2023
TEQ: Trainable Equivalent Transformation for Quantization of LLMs
TEQ: Trainable Equivalent Transformation for Quantization of LLMs
Wenhua Cheng
Yiyang Cai
Kaokao Lv
Haihao Shen
MQ
25
7
0
17 Oct 2023
EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit
  Diffusion Models
EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models
Yefei He
Jing Liu
Weijia Wu
Hong Zhou
Bohan Zhuang
DiffM
MQ
16
46
0
05 Oct 2023
Designing strong baselines for ternary neural network quantization
  through support and mass equalization
Designing strong baselines for ternary neural network quantization through support and mass equalization
Edouard Yvinec
Arnaud Dapogny
Kévin Bailly
MQ
11
0
0
30 Jun 2023
PTQD: Accurate Post-Training Quantization for Diffusion Models
PTQD: Accurate Post-Training Quantization for Diffusion Models
Yefei He
Luping Liu
Jing Liu
Weijia Wu
Hong Zhou
Bohan Zhuang
DiffM
MQ
22
101
0
18 May 2023
Learning Accurate Performance Predictors for Ultrafast Automated Model
  Compression
Learning Accurate Performance Predictors for Ultrafast Automated Model Compression
Ziwei Wang
Jiwen Lu
Han Xiao
Shengyu Liu
Jie Zhou
OffRL
15
1
0
13 Apr 2023
SpaceEvo: Hardware-Friendly Search Space Design for Efficient INT8
  Inference
SpaceEvo: Hardware-Friendly Search Space Design for Efficient INT8 Inference
Li Lyna Zhang
Xudong Wang
Jiahang Xu
Quanlu Zhang
Yujing Wang
Yuqing Yang
Ningxin Zheng
Ting Cao
Mao Yang
MQ
16
2
0
15 Mar 2023
Understanding weight-magnitude hyperparameters in training binary
  networks
Understanding weight-magnitude hyperparameters in training binary networks
Joris Quist
Yun-qiang Li
J. C. V. Gemert
MQ
24
0
0
04 Mar 2023
Ternary Quantization: A Survey
Ternary Quantization: A Survey
Danyang Liu
Xue Liu
MQ
16
3
0
02 Mar 2023
Towards Optimal Compression: Joint Pruning and Quantization
Towards Optimal Compression: Joint Pruning and Quantization
Ben Zandonati
Glenn Bucagu
Adrian Alan Pol
M. Pierini
Olya Sirkin
Tal Kopetz
MQ
17
2
0
15 Feb 2023
Learning Discretized Neural Networks under Ricci Flow
Learning Discretized Neural Networks under Ricci Flow
Jun Chen
Han Chen
Mengmeng Wang
Guang Dai
Ivor W. Tsang
Y. Liu
13
2
0
07 Feb 2023
Hyperspherical Loss-Aware Ternary Quantization
Hyperspherical Loss-Aware Ternary Quantization
Dan Liu
Xue Liu
MQ
19
0
0
24 Dec 2022
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device
  Super-Resolution
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-Resolution
Stylianos I. Venieris
Mario Almeida
Royson Lee
Nicholas D. Lane
SupR
10
4
0
15 Dec 2022
Quantization-aware Interval Bound Propagation for Training Certifiably
  Robust Quantized Neural Networks
Quantization-aware Interval Bound Propagation for Training Certifiably Robust Quantized Neural Networks
Mathias Lechner
Dorde Zikelic
K. Chatterjee
T. Henzinger
Daniela Rus
AAML
16
2
0
29 Nov 2022
Zero-Shot Dynamic Quantization for Transformer Inference
Zero-Shot Dynamic Quantization for Transformer Inference
Yousef El-Kurdi
Jerry Quinn
Avirup Sil
MQ
8
1
0
17 Nov 2022
MinUn: Accurate ML Inference on Microcontrollers
MinUn: Accurate ML Inference on Microcontrollers
Shikhar Jaiswal
R. Goli
Aayan Kumar
Vivek Seshadri
Rahul Sharma
21
2
0
29 Oct 2022
SeKron: A Decomposition Method Supporting Many Factorization Structures
SeKron: A Decomposition Method Supporting Many Factorization Structures
Marawan Gamal Abdel Hameed
A. Mosleh
Marzieh S. Tahaei
V. Nia
15
1
0
12 Oct 2022
Convolutional Neural Networks Quantization with Attention
Convolutional Neural Networks Quantization with Attention
Binyi Wu
Bernd Waschneck
Christian Mayr
MQ
8
1
0
30 Sep 2022
FP8 Quantization: The Power of the Exponent
FP8 Quantization: The Power of the Exponent
Andrey Kuzmin
M. V. Baalen
Yuwei Ren
Markus Nagel
Jorn W. T. Peters
Tijmen Blankevoort
MQ
10
78
0
19 Aug 2022
Mixed-Precision Neural Networks: A Survey
Mixed-Precision Neural Networks: A Survey
M. Rakka
M. Fouda
Pramod P. Khargonekar
Fadi J. Kurdahi
MQ
18
11
0
11 Aug 2022
QReg: On Regularization Effects of Quantization
QReg: On Regularization Effects of Quantization
Mohammadhossein Askarihemmat
Reyhane Askari Hemmat
Alexander Hoffman
Ivan Lazarevich
Ehsan Saboori
Olivier Mastropietro
Sudhakar Sah
Yvon Savaria
J. David
MQ
37
5
0
24 Jun 2022
Wavelet Feature Maps Compression for Image-to-Image CNNs
Wavelet Feature Maps Compression for Image-to-Image CNNs
Shahaf E. Finder
Yair Zohav
Maor Ashkenazi
Eran Treister
6
17
0
24 May 2022
REx: Data-Free Residual Quantization Error Expansion
REx: Data-Free Residual Quantization Error Expansion
Edouard Yvinec
Arnaud Dapgony
Matthieu Cord
Kévin Bailly
MQ
18
8
0
28 Mar 2022
Standard Deviation-Based Quantization for Deep Neural Networks
Standard Deviation-Based Quantization for Deep Neural Networks
Amir Ardakani
A. Ardakani
B. Meyer
J. Clark
W. Gross
MQ
35
1
0
24 Feb 2022
LG-LSQ: Learned Gradient Linear Symmetric Quantization
LG-LSQ: Learned Gradient Linear Symmetric Quantization
Shih-Ting Lin
Zhaofang Li
Yu-Hsiang Cheng
Hao-Wen Kuo
Chih-Cheng Lu
K. Tang
MQ
23
2
0
18 Feb 2022
Energy awareness in low precision neural networks
Energy awareness in low precision neural networks
Nurit Spingarn-Eliezer
Ron Banner
Elad Hoffer
Hilla Ben-Yaacov
T. Michaeli
36
0
0
06 Feb 2022
Post-training Quantization for Neural Networks with Provable Guarantees
Post-training Quantization for Neural Networks with Provable Guarantees
Jinjie Zhang
Yixuan Zhou
Rayan Saab
MQ
6
31
0
26 Jan 2022
Q-ViT: Fully Differentiable Quantization for Vision Transformer
Q-ViT: Fully Differentiable Quantization for Vision Transformer
Zhexin Li
Tong Yang
Peisong Wang
Jian Cheng
ViT
MQ
23
41
0
19 Jan 2022
Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural
  Networks
Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks
Runpei Dong
Zhanhong Tan
Mengdi Wu
Linfeng Zhang
Kaisheng Ma
MQ
33
11
0
30 Dec 2021
Implicit Neural Representations for Image Compression
Implicit Neural Representations for Image Compression
Yannick Strümpler
Janis Postels
Ren Yang
Luc van Gool
F. Tombari
17
158
0
08 Dec 2021
AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural
  Networks
AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural Networks
Huu Le
R. Høier
Che-Tsung Lin
Christopher Zach
42
16
0
06 Dec 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
26
93
0
04 Oct 2021
Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
  Quantization Loss
Cluster-Promoting Quantization with Bit-Drop for Minimizing Network Quantization Loss
J. H. Lee
Jihun Yun
S. Hwang
Eunho Yang
MQ
12
14
0
05 Sep 2021
Distance-aware Quantization
Distance-aware Quantization
Dohyung Kim
Junghyup Lee
Bumsub Ham
MQ
8
28
0
16 Aug 2021
Generalizable Mixed-Precision Quantization via Attribution Rank
  Preservation
Generalizable Mixed-Precision Quantization via Attribution Rank Preservation
Ziwei Wang
Han Xiao
Jiwen Lu
Jie Zhou
MQ
14
32
0
05 Aug 2021
QuPeD: Quantized Personalization via Distillation with Applications to
  Federated Learning
QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
MQ
24
56
0
29 Jul 2021
Compact and Optimal Deep Learning with Recurrent Parameter Generators
Compact and Optimal Deep Learning with Recurrent Parameter Generators
Jiayun Wang
Yubei Chen
Stella X. Yu
Brian Cheung
Yann LeCun
BDL
32
4
0
15 Jul 2021
Differentiable Model Compression via Pseudo Quantization Noise
Differentiable Model Compression via Pseudo Quantization Noise
Alexandre Défossez
Yossi Adi
Gabriel Synnaeve
DiffM
MQ
10
46
0
20 Apr 2021
Generative Zero-shot Network Quantization
Generative Zero-shot Network Quantization
Xiangyu He
Qinghao Hu
Peisong Wang
Jian Cheng
GAN
MQ
21
23
0
21 Jan 2021
12
Next