Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02054
Cited By
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
4 October 2018
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Descent Provably Optimizes Over-parameterized Neural Networks"
50 / 244 papers shown
Title
On the emergence of simplex symmetry in the final and penultimate layers of neural network classifiers
E. Weinan
Stephan Wojtowytsch
23
42
0
10 Dec 2020
Neural collapse with unconstrained features
D. Mixon
Hans Parshall
Jianzong Pi
11
114
0
23 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
45
257
0
18 Nov 2020
CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee
Tengyu Xu
Yingbin Liang
Guanghui Lan
34
121
0
11 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
18
18
0
09 Nov 2020
Federated Knowledge Distillation
Hyowoon Seo
Jihong Park
Seungeun Oh
M. Bennis
Seong-Lyun Kim
FedML
12
90
0
04 Nov 2020
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
13
44
0
27 Oct 2020
An Investigation of how Label Smoothing Affects Generalization
Blair Chen
Liu Ziyin
Zihao W. Wang
Paul Pu Liang
UQCV
21
17
0
23 Oct 2020
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi
Jianfeng Lu
13
15
0
22 Oct 2020
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Mingming Gong
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
16
26
0
22 Oct 2020
Deep Reinforcement Learning for Adaptive Network Slicing in 5G for Intelligent Vehicular Systems and Smart Cities
A. Nassar
Y. Yilmaz
AI4CE
11
55
0
19 Oct 2020
A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix
T. Doan
Mehdi Abbana Bennani
Bogdan Mazoure
Guillaume Rabusseau
Pierre Alquier
CLL
15
80
0
07 Oct 2020
Computational Separation Between Convolutional and Fully-Connected Networks
Eran Malach
Shai Shalev-Shwartz
14
26
0
03 Oct 2020
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
14
138
0
02 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
12
86
0
30 Sep 2020
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot
Jingtong Su
Yihang Chen
Tianle Cai
Tianhao Wu
Ruiqi Gao
Liwei Wang
J. Lee
6
85
0
22 Sep 2020
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
19
93
0
22 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao-quan Song
Mengdi Wang
Zheng Yu
13
42
0
21 Sep 2020
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
16
158
0
07 Sep 2020
Predicting Training Time Without Training
L. Zancato
Alessandro Achille
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
18
24
0
28 Aug 2020
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
36
95
0
25 Jul 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
47
34
0
22 Jul 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
27
85
0
13 Jul 2020
Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory
Tao Luo
Haizhao Yang
13
73
0
28 Jun 2020
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Greg Yang
35
134
0
25 Jun 2020
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
42
61
0
21 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
60
2,335
0
18 Jun 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
17
66
0
17 Jun 2020
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
8
33
0
16 Jun 2020
Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks
Kenta Oono
Taiji Suzuki
AI4CE
31
31
0
15 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
14
37
0
12 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
58
11
0
08 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
45
98
0
05 Jun 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
29
72
0
25 May 2020
Can Shallow Neural Networks Beat the Curse of Dimensionality? A mean field training perspective
Stephan Wojtowytsch
E. Weinan
MLT
18
48
0
21 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
6
0
0
15 May 2020
Analysis of Knowledge Transfer in Kernel Regime
Arman Rahbar
Ashkan Panahi
Chiranjib Bhattacharyya
Devdatt Dubhashi
M. Chehreghani
13
3
0
30 Mar 2020
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
26
13
0
23 Mar 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
34
182
0
10 Mar 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
26
54
0
25 Feb 2020
Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-layer Networks
Mert Pilanci
Tolga Ergen
13
116
0
24 Feb 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
11
4
0
22 Feb 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
25
165
0
21 Feb 2020
Learning Parities with Neural Networks
Amit Daniely
Eran Malach
13
76
0
18 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao-quan Song
Sanjeev Arora
21
51
0
16 Feb 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
16
327
0
11 Feb 2020
Proving the Lottery Ticket Hypothesis: Pruning is All You Need
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
48
271
0
03 Feb 2020
Memory capacity of neural networks with threshold and ReLU activations
Roman Vershynin
21
21
0
20 Jan 2020
Previous
1
2
3
4
5
Next