ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.02555
  4. Cited By
Differentiable Antithetic Sampling for Variance Reduction in Stochastic
  Variational Inference
v1v2 (latest)

Differentiable Antithetic Sampling for Variance Reduction in Stochastic Variational Inference

5 October 2018
Mike Wu
Noah D. Goodman
Stefano Ermon
    BDLDRL
ArXiv (abs)PDFHTML

Papers citing "Differentiable Antithetic Sampling for Variance Reduction in Stochastic Variational Inference"

7 / 7 papers shown
Title
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo
  Objectives
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo Objectives
Pierre-Alexandre Mattei
J. Frellsen
125
4
0
26 Jan 2022
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary VariablesInternational Conference on Machine Learning (ICML), 2021
Alek Dimitriev
Mingyuan Zhou
100
12
0
28 May 2021
Partition Function Estimation: A Quantitative Study
Partition Function Estimation: A Quantitative StudyInternational Joint Conference on Artificial Intelligence (IJCAI), 2021
Durgesh Kumar Agrawal
Yash Pote
Kuldeep S. Meel
152
12
0
24 May 2021
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
Zhe Dong
A. Mnih
George Tucker
DRL
190
36
0
18 Jun 2020
Note on the bias and variance of variational inference
Note on the bias and variance of variational inference
Chin-Wei Huang
Aaron Courville
119
5
0
09 Jun 2019
Hierarchical Importance Weighted Autoencoders
Hierarchical Importance Weighted AutoencodersInternational Conference on Machine Learning (ICML), 2019
Chin-Wei Huang
Kris Sankaran
Eeshan Gunesh Dhekane
Alexandre Lacoste
Aaron Courville
BDL
136
16
0
13 May 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
364
114
0
03 Apr 2019
1