Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.04864
Cited By
Sequence-to-Sequence Models for Data-to-Text Natural Language Generation: Word- vs. Character-based Processing and Output Diversity
11 October 2018
Glorianna Jagfeld
Sabrina Jenne
Ngoc Thang Vu
AIMat
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sequence-to-Sequence Models for Data-to-Text Natural Language Generation: Word- vs. Character-based Processing and Output Diversity"
7 / 7 papers shown
Title
State-of-the-art generalisation research in NLP: A taxonomy and review
Dieuwke Hupkes
Mario Giulianelli
Verna Dankers
Mikel Artetxe
Yanai Elazar
...
Leila Khalatbari
Maria Ryskina
Rita Frieske
Ryan Cotterell
Zhijing Jin
106
93
0
06 Oct 2022
Innovations in Neural Data-to-text Generation: A Survey
Mandar Sharma
Ajay K. Gogineni
Naren Ramakrishnan
24
10
0
25 Jul 2022
Lexical Features Are More Vulnerable, Syntactic Features Have More Predictive Power
Jekaterina Novikova
Aparna Balagopalan
Ksenia Shkaruta
Frank Rudzicz
17
7
0
30 Sep 2019
Evaluating the State-of-the-Art of End-to-End Natural Language Generation: The E2E NLG Challenge
Ondrej Dusek
Jekaterina Novikova
Verena Rieser
ELM
23
231
0
23 Jan 2019
OpenNMT: Open-Source Toolkit for Neural Machine Translation
Guillaume Klein
Yoon Kim
Yuntian Deng
Jean Senellart
Alexander M. Rush
254
1,896
0
10 Jan 2017
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,743
0
26 Sep 2016
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
216
7,924
0
17 Aug 2015
1