ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.06838
  4. Cited By
Finite-sample analysis of M-estimators using self-concordance
v1v2 (latest)

Finite-sample analysis of M-estimators using self-concordance

16 October 2018
Dmitrii Ostrovskii
Francis R. Bach
ArXiv (abs)PDFHTML

Papers citing "Finite-sample analysis of M-estimators using self-concordance"

30 / 30 papers shown
Title
Generalized Linear Markov Decision Process
Generalized Linear Markov Decision Process
Sinian Zhang
Kaicheng Zhang
Ziping Xu
Tianxi Cai
D. Zhou
37
0
0
01 Jun 2025
On the Efficiency of ERM in Feature Learning
On the Efficiency of ERM in Feature Learning
Ayoub El Hanchi
Chris J. Maddison
Murat A. Erdogdu
118
0
0
18 Nov 2024
Almost Free: Self-concordance in Natural Exponential Families and an
  Application to Bandits
Almost Free: Self-concordance in Natural Exponential Families and an Application to Bandits
Shuai Liu
Alex Ayoub
Flore Sentenac
Xiaoqi Tan
Csaba Szepesvári
81
1
0
01 Oct 2024
Multiply Robust Estimation for Local Distribution Shifts with Multiple
  Domains
Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains
Steven Wilkins-Reeves
Xu Chen
Qianying Ma
Christine Agarwal
A. Hofleitner
OOD
65
1
0
21 Feb 2024
Overcoming Saturation in Density Ratio Estimation by Iterated
  Regularization
Overcoming Saturation in Density Ratio Estimation by Iterated Regularization
Lukas Gruber
Markus Holzleitner
Johannes Lehner
Sepp Hochreiter
Werner Zellinger
117
2
0
21 Feb 2024
Optimal Excess Risk Bounds for Empirical Risk Minimization on $p$-Norm
  Linear Regression
Optimal Excess Risk Bounds for Empirical Risk Minimization on ppp-Norm Linear Regression
Ayoub El Hanchi
Murat A. Erdogdu
115
2
0
19 Oct 2023
Self-concordant Smoothing for Large-Scale Convex Composite Optimization
Self-concordant Smoothing for Large-Scale Convex Composite Optimization
Adeyemi Damilare Adeoye
Alberto Bemporad
49
1
0
04 Sep 2023
A Differentially Private Weighted Empirical Risk Minimization Procedure
  and its Application to Outcome Weighted Learning
A Differentially Private Weighted Empirical Risk Minimization Procedure and its Application to Outcome Weighted Learning
S. Giddens
Yiwang Zhou
K. Krull
T. Brinkman
P. Song
Fan Liu
66
1
0
24 Jul 2023
On the sample complexity of parameter estimation in logistic regression
  with normal design
On the sample complexity of parameter estimation in logistic regression with normal design
Daniel J. Hsu
A. Mazumdar
61
7
0
09 Jul 2023
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
Vivien A. Cabannes
B. Kiani
Randall Balestriero
Yann LeCun
A. Bietti
SSL
92
33
0
06 Feb 2023
Confidence Sets under Generalized Self-Concordance
Confidence Sets under Generalized Self-Concordance
Lang Liu
Zaïd Harchaoui
51
1
0
31 Dec 2022
Statistical and Computational Guarantees for Influence Diagnostics
Statistical and Computational Guarantees for Influence Diagnostics
Jillian R. Fisher
Lang Liu
Krishna Pillutla
Y. Choi
Zaïd Harchaoui
TDI
61
0
0
08 Dec 2022
A Conditional Randomization Test for Sparse Logistic Regression in
  High-Dimension
A Conditional Randomization Test for Sparse Logistic Regression in High-Dimension
Binh Duc Nguyen
Bertrand Thirion
Sylvain Arlot
26
6
0
29 May 2022
Orthogonal Statistical Learning with Self-Concordant Loss
Orthogonal Statistical Learning with Self-Concordant Loss
Lang Liu
Carlos Cinelli
Zaïd Harchaoui
50
2
0
30 Apr 2022
Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite
  Variance Assumption
Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption
Lihu Xu
Fang Yao
Qiuran Yao
Huiming Zhang
69
11
0
10 Jan 2022
SCORE: Approximating Curvature Information under Self-Concordant
  Regularization
SCORE: Approximating Curvature Information under Self-Concordant Regularization
Adeyemi Damilare Adeoye
Alberto Bemporad
44
4
0
14 Dec 2021
Convergence Rates for the MAP of an Exponential Family and Stochastic
  Mirror Descent -- an Open Problem
Convergence Rates for the MAP of an Exponential Family and Stochastic Mirror Descent -- an Open Problem
Rémi Le Priol
Frederik Kunstner
Damien Scieur
Simon Lacoste-Julien
30
1
0
12 Nov 2021
Mixability made efficient: Fast online multiclass logistic regression
Mixability made efficient: Fast online multiclass logistic regression
Rémi Jézéquel
Pierre Gaillard
Alessandro Rudi
76
11
0
08 Oct 2021
Learning to be Fair: A Consequentialist Approach to Equitable
  Decision-Making
Learning to be Fair: A Consequentialist Approach to Equitable Decision-Making
Alex Chohlas-Wood
Madison Coots
Henry Zhu
Emma Brunskill
Sharad Goel
FaML
84
25
0
18 Sep 2021
Scalable Frank-Wolfe on Generalized Self-concordant Functions via Simple
  Steps
Scalable Frank-Wolfe on Generalized Self-concordant Functions via Simple Steps
Alejandro Carderera
Mathieu Besançon
Sebastian Pokutta
106
6
0
28 May 2021
Differentially private inference via noisy optimization
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
103
31
0
19 Mar 2021
Near-Optimal Procedures for Model Discrimination with Non-Disclosure
  Properties
Near-Optimal Procedures for Model Discrimination with Non-Disclosure Properties
Dmitrii Ostrovskii
M. Ndaoud
Adel Javanmard
Meisam Razaviyayn
FedML
39
0
0
04 Dec 2020
Non-asymptotic Optimal Prediction Error for Growing-dimensional
  Partially Functional Linear Models
Non-asymptotic Optimal Prediction Error for Growing-dimensional Partially Functional Linear Models
Huiming Zhang
Xiaoyu Lei
62
1
0
10 Sep 2020
A Newton Frank-Wolfe Method for Constrained Self-Concordant Minimization
A Newton Frank-Wolfe Method for Constrained Self-Concordant Minimization
Deyi Liu
Volkan Cevher
Quoc Tran-Dinh
84
15
0
17 Feb 2020
Self-Concordant Analysis of Frank-Wolfe Algorithms
Self-Concordant Analysis of Frank-Wolfe Algorithms
Pavel Dvurechensky
P. Ostroukhov
K. Safin
Shimrit Shtern
Mathias Staudigl
103
24
0
11 Feb 2020
Stochastic Online Optimization using Kalman Recursion
Stochastic Online Optimization using Kalman Recursion
Joseph de Vilmarest
Olivier Wintenberger
52
9
0
10 Feb 2020
An improper estimator with optimal excess risk in misspecified density
  estimation and logistic regression
An improper estimator with optimal excess risk in misspecified density estimation and logistic regression
Jaouad Mourtada
Stéphane Gaïffas
108
29
0
23 Dec 2019
A Diffusion Process Perspective on Posterior Contraction Rates for
  Parameters
A Diffusion Process Perspective on Posterior Contraction Rates for Parameters
Wenlong Mou
Nhat Ho
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
57
16
0
03 Sep 2019
A unifying approach for doubly-robust $\ell_1$ regularized estimation of
  causal contrasts
A unifying approach for doubly-robust ℓ1\ell_1ℓ1​ regularized estimation of causal contrasts
Ezequiel Smucler
A. Rotnitzky
J. M. Robins
CML
85
80
0
07 Apr 2019
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk
  Minimization through Self-Concordance
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance
Ulysse Marteau-Ferey
Dmitrii Ostrovskii
Francis R. Bach
Alessandro Rudi
188
52
0
08 Feb 2019
1