Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.07481
Cited By
Provable Robustness of ReLU networks via Maximization of Linear Regions
17 October 2018
Francesco Croce
Maksym Andriushchenko
Matthias Hein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provable Robustness of ReLU networks via Maximization of Linear Regions"
31 / 31 papers shown
Title
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
19
7
0
18 Dec 2022
Towards Robust Dataset Learning
Yihan Wu
Xinda Li
Florian Kerschbaum
Heng Huang
Hongyang R. Zhang
DD
OOD
41
10
0
19 Nov 2022
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
23
9
0
15 Nov 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
19
4
0
03 Feb 2022
The Fundamental Limits of Interval Arithmetic for Neural Networks
M. Mirman
Maximilian Baader
Martin Vechev
17
6
0
09 Dec 2021
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
20
23
0
12 Jun 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
27
65
0
09 Apr 2021
On the Adversarial Robustness of Vision Transformers
Rulin Shao
Zhouxing Shi
Jinfeng Yi
Pin-Yu Chen
Cho-Jui Hsieh
ViT
30
137
0
29 Mar 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
28
25
0
20 Mar 2021
Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack
Mengting Xu
Tao Zhang
Zhongnian Li
Mingxia Liu
Daoqiang Zhang
AAML
OOD
MedIm
25
41
0
05 Mar 2021
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi-An Ma
Yuan Yao
AAML
29
26
0
28 Sep 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
19
81
0
15 Jun 2020
ReLU Code Space: A Basis for Rating Network Quality Besides Accuracy
Natalia Shepeleva
Werner Zellinger
Michal Lewandowski
Bernhard A. Moser
17
3
0
20 May 2020
Topological Effects on Attacks Against Vertex Classification
B. A. Miller
Mustafa Çamurcu
Alexander J. Gomez
Kevin S. Chan
Tina Eliassi-Rad
AAML
9
2
0
12 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
30
785
0
26 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
46
1,158
0
12 Jan 2020
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
26
68
0
06 Nov 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
24
91
0
29 Sep 2019
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks
Alejandro Molina
P. Schramowski
Kristian Kersting
ODL
16
77
0
15 Jul 2019
Certifiable Robustness and Robust Training for Graph Convolutional Networks
Daniel Zügner
Stephan Günnemann
OffRL
31
159
0
28 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
25
535
0
09 Jun 2019
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks
Maksym Andriushchenko
Matthias Hein
20
61
0
08 Jun 2019
Robustness for Non-Parametric Classification: A Generic Attack and Defense
Yao-Yuan Yang
Cyrus Rashtchian
Yizhen Wang
Kamalika Chaudhuri
SILM
AAML
29
42
0
07 Jun 2019
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
20
30
0
27 Mar 2019
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
16
270
0
06 Dec 2018
Prototype-based Neural Network Layers: Incorporating Vector Quantization
S. Saralajew
Lars Holdijk
Maike Rees
T. Villmann
MQ
17
15
0
04 Dec 2018
Logit Pairing Methods Can Fool Gradient-Based Attacks
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
19
82
0
29 Oct 2018
Empirical Bounds on Linear Regions of Deep Rectifier Networks
Thiago Serra
Srikumar Ramalingam
8
42
0
08 Oct 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
1