ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.10525
  4. Cited By
Toward an AI Physicist for Unsupervised Learning
v1v2v3v4 (latest)

Toward an AI Physicist for Unsupervised Learning

24 October 2018
Tailin Wu
Max Tegmark
    DRLAI4CESSLOOD
ArXiv (abs)PDFHTML

Papers citing "Toward an AI Physicist for Unsupervised Learning"

28 / 28 papers shown
Oracle-Preserving Latent Flows
Oracle-Preserving Latent Flows
Alexander Roman
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
DRL
279
6
0
02 Feb 2023
Automated Gadget Discovery in Science
Automated Gadget Discovery in Science
Lea M. Trenkwalder
Andrea López-Incera
Hendrik Poulsen Nautrup
Fulvio Flamini
Hans J. Briegel
169
3
0
24 Dec 2022
Microscopy is All You Need
Microscopy is All You Need
Sergei V. Kalinin
Rama K Vasudevan
Yongtao Liu
Ayana Ghosh
Kevin M. Roccapriore
M. Ziatdinov
159
1
0
12 Oct 2022
Neuronal diversity can improve machine learning for physics and beyond
Neuronal diversity can improve machine learning for physics and beyondScientific Reports (Sci Rep), 2022
A. Choudhary
Anil Radhakrishnan
J. Lindner
S. Sinha
W. Ditto
AI4CE
195
4
0
09 Apr 2022
AI Research Associate for Early-Stage Scientific Discovery
AI Research Associate for Early-Stage Scientific Discovery
M. Behandish
J. Maxwell
Johan de Kleer
AI4CE
123
1
0
02 Feb 2022
Machine-Learning Non-Conservative Dynamics for New-Physics Detection
Machine-Learning Non-Conservative Dynamics for New-Physics DetectionPhysical Review E (PRE), 2021
Ziming Liu
Bohan Wang
Qi Meng
Wei Chen
M. Tegmark
Tie-Yan Liu
PINNAI4CE
395
19
0
31 May 2021
Learning Hamiltonian dynamics by reservoir computer
Learning Hamiltonian dynamics by reservoir computerPhysical Review E (PRE), 2021
Han Zhang
Huawei Fan
Liang Wang
Xingang Wang
118
7
0
24 Apr 2021
Similarity-Based Equational Inference in Physics
Similarity-Based Equational Inference in PhysicsPhysical Review Research (Phys. Rev. Res.), 2021
Jordan Meadows
André Freitas
183
5
0
24 Mar 2021
Toward Building Science Discovery Machines
Toward Building Science Discovery Machines
A. Khalili
A. Bouchachia
AI4CE
358
1
0
24 Mar 2021
Discovering conservation laws from trajectories via machine learning
Discovering conservation laws from trajectories via machine learning
Seungwoong Ha
Hawoong Jeong
PINNAI4CE
209
10
0
08 Feb 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
703
3
0
04 Jan 2021
Probabilistic Grammars for Equation Discovery
Probabilistic Grammars for Equation DiscoveryKnowledge-Based Systems (KBS), 2020
Jure Brence
L. Todorovski
Jannis Brugger
318
40
0
01 Dec 2020
Forecasting Hamiltonian dynamics without canonical coordinates
Forecasting Hamiltonian dynamics without canonical coordinatesNonlinear dynamics (Nonlinear Dyn.), 2020
A. Choudhary
J. Lindner
Elliott G. Holliday
Scott T. Miller
S. Sinha
W. Ditto
158
31
0
28 Oct 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
949
90
0
17 Sep 2020
The world as a neural network
The world as a neural network
V. Vanchurin
188
65
0
04 Aug 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
  modularity
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
330
233
0
18 Jun 2020
Symbolic Pregression: Discovering Physical Laws from Distorted Video
Symbolic Pregression: Discovering Physical Laws from Distorted Video
S. Udrescu
Max Tegmark
264
45
0
19 May 2020
Boosting on the shoulders of giants in quantum device calibration
Boosting on the shoulders of giants in quantum device calibration
A. Wozniakowski
Jayne Thompson
M. Gu
F. Binder
143
5
0
13 May 2020
Renormalized Mutual Information for Artificial Scientific Discovery
Renormalized Mutual Information for Artificial Scientific DiscoveryPhysical Review Letters (PRL), 2020
Leopoldo Sarra
A. Aiello
F. Marquardt
174
5
0
04 May 2020
Learning the Ising Model with Generative Neural Networks
Learning the Ising Model with Generative Neural NetworksPhysical Review Research (PRResearch), 2020
Francesco DÁngelo
Lucas Böttcher
AI4CE
122
32
0
15 Jan 2020
Intelligence, physics and information -- the tradeoff between accuracy
  and simplicity in machine learning
Intelligence, physics and information -- the tradeoff between accuracy and simplicity in machine learning
Tailin Wu
327
2
0
11 Jan 2020
Operationally meaningful representations of physical systems in neural
  networks
Operationally meaningful representations of physical systems in neural networks
Hendrik Poulsen Nautrup
Tony Metger
Raban Iten
Sofiene Jerbi
Lea M. Trenkwalder
H. Wilming
Hans J. Briegel
R. Renner
AI4CENAI
153
30
0
02 Jan 2020
Learning Generalized Quasi-Geostrophic Models Using Deep Neural
  Numerical Models
Learning Generalized Quasi-Geostrophic Models Using Deep Neural Numerical Models
Redouane Lguensat
Julien Le Sommer
Sammy Metref
E. Cosme
Ronan Fablet
AI4ClAI4CE
114
6
0
20 Nov 2019
Exploration and Exploitation in Symbolic Regression using
  Quality-Diversity and Evolutionary Strategies Algorithms
Exploration and Exploitation in Symbolic Regression using Quality-Diversity and Evolutionary Strategies Algorithms
Jean-Philippe Bruneton
L. Cazenille
A. Douin
V. Reverdy
126
5
0
10 Jun 2019
AI Feynman: a Physics-Inspired Method for Symbolic Regression
AI Feynman: a Physics-Inspired Method for Symbolic RegressionScience Advances (Sci Adv), 2019
S. Udrescu
Max Tegmark
508
1,072
0
27 May 2019
Applying machine learning to improve simulations of a chaotic dynamical
  system using empirical error correction
Applying machine learning to improve simulations of a chaotic dynamical system using empirical error correction
P. Watson
AI4ClAI4CE
87
70
0
24 Apr 2019
Fast Neural Network Predictions from Constrained Aerodynamics Datasets
Fast Neural Network Predictions from Constrained Aerodynamics Datasets
Cristina White
D. Ushizima
C. Farhat
AI4CE
172
19
0
26 Jan 2019
Discovering physical concepts with neural networks
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINNAI4CE
280
423
0
26 Jul 2018
1
Page 1 of 1