ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.10775
  4. Cited By
Adversarially Robust Optimization with Gaussian Processes
v1v2 (latest)

Adversarially Robust Optimization with Gaussian Processes

25 October 2018
Ilija Bogunovic
Jonathan Scarlett
Stefanie Jegelka
Volkan Cevher
    GPAAML
ArXiv (abs)PDFHTML

Papers citing "Adversarially Robust Optimization with Gaussian Processes"

39 / 39 papers shown
Title
Lower Bounds for Time-Varying Kernelized Bandits
Lower Bounds for Time-Varying Kernelized Bandits
Xu Cai
Jonathan Scarlett
81
1
0
22 Oct 2024
Batch Bayesian Optimization for Replicable Experimental Design
Batch Bayesian Optimization for Replicable Experimental Design
Zhongxiang Dai
Q. Nguyen
Sebastian Shenghong Tay
Daisuke Urano
Richalynn Leong
Bryan Kian Hsiang Low
Patrick Jaillet
37
5
0
02 Nov 2023
Distributionally Robust Model-based Reinforcement Learning with Large
  State Spaces
Distributionally Robust Model-based Reinforcement Learning with Large State Spaces
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Yifan Hu
Andreas Krause
Ilija Bogunovic
OOD
78
12
0
05 Sep 2023
Robust Bayesian Target Value Optimization
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
75
10
0
11 Jan 2023
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
P. Mikkola
Julien Martinelli
Louis Filstroff
Samuel Kaski
101
11
0
25 Oct 2022
Learning Representation for Bayesian Optimization with Collision-free
  Regularization
Learning Representation for Bayesian Optimization with Collision-free Regularization
Fengxue Zhang
Brian D. Nord
Yuxin Chen
OODBDL
42
2
0
16 Mar 2022
Regret Bounds for Expected Improvement Algorithms in Gaussian Process
  Bandit Optimization
Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
45
14
0
15 Mar 2022
Distributionally Robust Bayesian Optimization with $\varphi$-divergences
Distributionally Robust Bayesian Optimization with φ\varphiφ-divergences
Hisham Husain
Vu-Linh Nguyen
Anton Van Den Hengel
85
13
0
04 Mar 2022
Robust Multi-Objective Bayesian Optimization Under Input Noise
Robust Multi-Objective Bayesian Optimization Under Input Noise
Sam Daulton
Sait Cakmak
Maximilian Balandat
Michael A. Osborne
Enlu Zhou
E. Bakshy
AAML
92
38
0
15 Feb 2022
Distributed saddle point problems for strongly concave-convex functions
Distributed saddle point problems for strongly concave-convex functions
Muhammad I. Qureshi
U. Khan
122
12
0
11 Feb 2022
A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian
  Process Bandits
A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits
Ilija Bogunovic
Zihan Li
Andreas Krause
Jonathan Scarlett
79
9
0
03 Feb 2022
Bayesian Optimization for Distributionally Robust Chance-constrained
  Problem
Bayesian Optimization for Distributionally Robust Chance-constrained Problem
Yu Inatsu
Shion Takeno
Masayuki Karasuyama
Ichiro Takeuchi
68
13
0
31 Jan 2022
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Raul Astudillo
P. Frazier
99
36
0
02 Jan 2022
Misspecified Gaussian Process Bandit Optimization
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
86
45
0
09 Nov 2021
Risk-averse Heteroscedastic Bayesian Optimization
Risk-averse Heteroscedastic Bayesian Optimization
A. Makarova
Ilnura N. Usmanova
Ilija Bogunovic
Andreas Krause
79
36
0
05 Nov 2021
Adversarial Attacks on Gaussian Process Bandits
Adversarial Attacks on Gaussian Process Bandits
E. Han
Jonathan Scarlett
GPAAML
57
6
0
16 Oct 2021
Bayesian Optimization for Min Max Optimization
Bayesian Optimization for Min Max Optimization
D. Weichert
Alexander Kister
63
2
0
29 Jul 2021
Bayesian Optimisation with Formal Guarantees
Bayesian Optimisation with Formal Guarantees
F. Brauße
Z. Khasidashvili
Konstantin Korovin
21
0
0
10 Jun 2021
Bias-Robust Bayesian Optimization via Dueling Bandits
Bias-Robust Bayesian Optimization via Dueling Bandits
Johannes Kirschner
Andreas Krause
48
11
0
25 May 2021
Adversarial Robustness Guarantees for Gaussian Processes
Adversarial Robustness Guarantees for Gaussian Processes
A. Patané
Arno Blaas
Luca Laurenti
L. Cardelli
Stephen J. Roberts
Marta Z. Kwiatkowska
GPAAML
188
9
0
07 Apr 2021
Robust Bandit Learning with Imperfect Context
Robust Bandit Learning with Imperfect Context
Jianyi Yang
Shaolei Ren
61
8
0
09 Feb 2021
Active learning for distributionally robust level-set estimation
Active learning for distributionally robust level-set estimation
Yu Inatsu
S. Iwazaki
Ichiro Takeuchi
91
15
0
08 Feb 2021
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
123
80
0
07 Dec 2020
A Domain-Shrinking based Bayesian Optimization Algorithm with
  Order-Optimal Regret Performance
A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance
Sudeep Salgia
Sattar Vakili
Qing Zhao
108
34
0
27 Oct 2020
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
145
113
0
20 Oct 2020
Mean-Variance Analysis in Bayesian Optimization under Uncertainty
Mean-Variance Analysis in Bayesian Optimization under Uncertainty
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
75
34
0
17 Sep 2020
Bayesian Quadrature Optimization for Probability Threshold Robustness
  Measure
Bayesian Quadrature Optimization for Probability Threshold Robustness Measure
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
TPM
72
11
0
22 Jun 2020
Gradient Free Minimax Optimization: Variance Reduction and Faster
  Convergence
Gradient Free Minimax Optimization: Variance Reduction and Faster Convergence
Tengyu Xu
Zhe Wang
Yingbin Liang
H. Vincent Poor
65
30
0
16 Jun 2020
Multi-Scale Zero-Order Optimization of Smooth Functions in an RKHS
Multi-Scale Zero-Order Optimization of Smooth Functions in an RKHS
S. Shekhar
T. Javidi
31
20
0
11 May 2020
Time-varying Gaussian Process Bandit Optimization with Non-constant
  Evaluation Time
Time-varying Gaussian Process Bandit Optimization with Non-constant Evaluation Time
Hideaki Imamura
Nontawat Charoenphakdee
Futoshi Futami
Issei Sato
Junya Honda
Masashi Sugiyama
54
3
0
10 Mar 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
103
53
0
04 Mar 2020
Mixed Strategies for Robust Optimization of Unknown Objectives
Mixed Strategies for Robust Optimization of Unknown Objectives
Pier Giuseppe Sessa
Ilija Bogunovic
Maryam Kamgarpour
Andreas Krause
73
11
0
28 Feb 2020
Distributionally Robust Bayesian Optimization
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
113
79
0
20 Feb 2020
Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization
Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization
Lukas P. Frohlich
Edgar D. Klenske
Julia Vinogradska
Christian Daniel
Melanie Zeilinger
102
38
0
07 Feb 2020
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved
  Complexities
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities
Zhongruo Wang
Krishnakumar Balasubramanian
Shiqian Ma
Meisam Razaviyayn
85
28
0
22 Jan 2020
Min-Max Optimization without Gradients: Convergence and Applications to
  Adversarial ML
Min-Max Optimization without Gradients: Convergence and Applications to Adversarial ML
Sijia Liu
Songtao Lu
Xiangyi Chen
Yao Feng
Kaidi Xu
Abdullah Al-Dujaili
Mingyi Hong
Una-May Obelilly
94
26
0
30 Sep 2019
No-Regret Learning in Unknown Games with Correlated Payoffs
No-Regret Learning in Unknown Games with Correlated Payoffs
Pier Giuseppe Sessa
Ilija Bogunovic
Maryam Kamgarpour
Andreas Krause
OffRL
94
40
0
18 Sep 2019
Bayesian Optimization under Heavy-tailed Payoffs
Bayesian Optimization under Heavy-tailed Payoffs
Sayak Ray Chowdhury
Aditya Gopalan
65
27
0
16 Sep 2019
Adversarial Robustness Guarantees for Classification with Gaussian
  Processes
Adversarial Robustness Guarantees for Classification with Gaussian Processes
Arno Blaas
A. Patané
Luca Laurenti
L. Cardelli
Marta Z. Kwiatkowska
Stephen J. Roberts
GPAAML
89
21
0
28 May 2019
1