Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11646
Cited By
Removing Hidden Confounding by Experimental Grounding
27 October 2018
Nathan Kallus
A. Puli
Uri Shalit
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Removing Hidden Confounding by Experimental Grounding"
33 / 33 papers shown
Title
Semiparametric Double Reinforcement Learning with Applications to Long-Term Causal Inference
Lars van der Laan
David Hubbard
Allen Tran
Nathan Kallus
Aurélien F. Bibaut
OffRL
79
0
0
01 Jul 2025
Deconfounded Warm-Start Thompson Sampling with Applications to Precision Medicine
Prateek Jaiswal
Esmaeil Keyvanshokooh
Junyu Cao
57
0
0
22 May 2025
Long-term Causal Inference via Modeling Sequential Latent Confounding
Weilin Chen
Ruichu Cai
Yuguang Yan
Zijian Li
José Miguel Hernández-Lobato
CML
165
1
0
26 Feb 2025
Adaptive-TMLE for the Average Treatment Effect based on Randomized Controlled Trial Augmented with Real-World Data
Mark van der Laan
Sky Qiu
L. Laan
Lars van der Laan
92
9
0
12 May 2024
A Double Machine Learning Approach to Combining Experimental and Observational Data
Harsh Parikh
Marco Morucci
Vittorio Orlandi
Sudeepa Roy
Cynthia Rudin
A. Volfovsky
49
8
0
04 Jul 2023
Causal Effect Estimation from Observational and Interventional Data Through Matrix Weighted Linear Estimators
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
CML
33
0
0
09 Jun 2023
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OOD
CML
72
22
0
08 Oct 2022
Falsification before Extrapolation in Causal Effect Estimation
Zeshan Hussain
Michael Oberst
M. Shih
David Sontag
CML
95
9
0
27 Sep 2022
Heterogeneous Treatment Effect with Trained Kernels of the Nadaraya-Watson Regression
A. Konstantinov
Stanislav R. Kirpichenko
Lev V. Utkin
CML
54
4
0
19 Jul 2022
Detecting hidden confounding in observational data using multiple environments
R. Karlsson
Jesse H. Krijthe
CML
OOD
94
13
0
27 May 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
90
32
0
25 Feb 2022
Long-term Causal Inference Under Persistent Confounding via Data Combination
Guido Imbens
Nathan Kallus
Xiaojie Mao
Yuhao Wang
CML
115
49
0
15 Feb 2022
Generalizing Clinical Trials with Convex Hulls
Eric V. Strobl
Thomas A. Lasko
CML
25
1
0
25 Nov 2021
ADCB: An Alzheimer's disease benchmark for evaluating observational estimators of causal effects
N. M. Kinyanjui
Fredrik D. Johansson
CML
45
0
0
12 Nov 2021
Learning Pareto-Efficient Decisions with Confidence
Sofia Ek
Dave Zachariah
Petre Stoica
8
1
0
19 Oct 2021
Conditional Cross-Design Synthesis Estimators for Generalizability in Medicaid
Irina Degtiar
T. Layton
Jacob Wallace
Sherri Rose
CML
63
5
0
27 Sep 2021
Obtaining Causal Information by Merging Datasets with MAXENT
Sergio Hernan Garrido Mejia
Elke Kirschbaum
Dominik Janzing
CML
123
10
0
15 Jul 2021
Quantum causal inference in the presence of hidden common causes: An entropic approach
Mohammad Ali Javidian
Vaneet Aggarwal
Z. Jacob
CML
69
2
0
24 Apr 2021
Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters
Carlos Fernández-Loría
F. Provost
CML
67
45
0
08 Apr 2021
Multi-Source Causal Inference Using Control Variates
Wenshuo Guo
S. Wang
Peng Ding
Yixin Wang
Michael I. Jordan
CML
101
19
0
30 Mar 2021
Causal Markov Boundaries
Sofia Triantafillou
Fattaneh Jabbari
Gregory F. Cooper
CML
OOD
55
5
0
12 Mar 2021
A Review of Generalizability and Transportability
Irina Degtiar
Sherri Rose
CML
53
220
0
23 Feb 2021
RealCause: Realistic Causal Inference Benchmarking
Brady Neal
Chin-Wei Huang
Sunand Raghupathi
CML
ELM
72
34
0
30 Nov 2020
Causal Transfer Random Forest: Combining Logged Data and Randomized Experiments for Robust Prediction
Shuxi Zeng
Murat Ali Bayir
Joel Pfeiffer
Denis Xavier Charles
Emre Kıcıman
TTA
52
18
0
17 Oct 2020
How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference
A. Gentzel
Purva Pruthi
David D. Jensen
CML
67
18
0
06 Oct 2020
Bandits with Partially Observable Confounded Data
Guy Tennenholtz
Uri Shalit
Shie Mannor
Yonathan Efroni
OffRL
69
24
0
11 Jun 2020
Causal Inference With Selectively Deconfounded Data
Kyra Gan
Andrew A. Li
Zachary Chase Lipton
S. Tayur
CML
61
7
0
25 Feb 2020
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
123
516
0
05 Feb 2020
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
128
100
0
21 Jan 2020
Causal bootstrapping
Max A. Little
Reham Badawy
CML
58
20
0
21 Oct 2019
Estimation of Personalized Heterogeneous Treatment Effects Using Concatenation and Augmentation of Feature Vectors
Lev V. Utkin
M. V. Kots
V. Chukanov
CML
43
1
0
09 Sep 2019
Policy Evaluation with Latent Confounders via Optimal Balance
Andrew Bennett
Nathan Kallus
CML
62
18
0
06 Aug 2019
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo
Lu Cheng
Jundong Li
P. R. Hahn
Huan Liu
CML
88
168
0
25 Sep 2018
1