Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11693
Cited By
Stein Variational Gradient Descent as Moment Matching
27 October 2018
Qiang Liu
Dilin Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stein Variational Gradient Descent as Moment Matching"
15 / 15 papers shown
Title
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY Estimation
Tony Tohme
Mohsen Sadr
K. Youcef-Toumi
N. Hadjiconstantinou
30
3
0
07 Jun 2023
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
26
19
0
01 Jun 2022
LDC-VAE: A Latent Distribution Consistency Approach to Variational AutoEncoders
Xiaoyu Chen
Chen Gong
Qiang He
Xinwen Hou
Yu Liu
28
1
0
22 Sep 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
22
35
0
07 May 2021
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
27
22
0
25 Feb 2021
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
A. Gretton
13
76
0
17 Jun 2020
Black-box Off-policy Estimation for Infinite-Horizon Reinforcement Learning
Ali Mousavi
Lihong Li
Qiang Liu
Denny Zhou
OffRL
11
32
0
24 Mar 2020
Stein Variational Gradient Descent With Matrix-Valued Kernels
Dilin Wang
Ziyang Tang
Chandrajit L. Bajaj
Qiang Liu
25
62
0
28 Oct 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
23
136
0
09 Jun 2019
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
202
498
0
11 Jun 2018
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
107
324
0
09 Feb 2016
1