Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.12263
Cited By
v1
v2 (latest)
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
29 October 2018
David Reeb
Andreas Doerr
S. Gerwinn
Barbara Rakitsch
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds"
14 / 14 papers shown
Title
Deep Actor-Critics with Tight Risk Certificates
Bahareh Tasdighi
Manuel Haussmann
Yi-Shan Wu
A. Masegosa
M. Kandemir
UQCV
78
0
0
26 May 2025
Multi-View Majority Vote Learning Algorithms: Direct Minimization of PAC-Bayesian Bounds
Mehdi Hennequin
Abdelkrim Zitouni
K. Benabdeslem
H. Elghazel
Yacine Gaci
92
0
0
09 Nov 2024
PAC-Bayesian Soft Actor-Critic Learning
Bahareh Tasdighi
Abdullah Akgul
Manuel Haussmann
Kenny Kazimirzak Brink
M. Kandemir
91
4
0
30 Jan 2023
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
104
69
0
26 Jul 2021
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
87
103
0
29 Jun 2021
Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote
Yi-Shan Wu
A. Masegosa
S. Lorenzen
Christian Igel
Yevgeny Seldin
50
8
0
25 Jun 2021
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi
Paul Viallard
Emilie Morvant
Rémi Emonet
Amaury Habrard
Pascal Germain
Benjamin Guedj
FedML
BDL
93
17
0
23 Jun 2021
Self-Bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound
Paul Viallard
Pascal Germain
Amaury Habrard
Emilie Morvant
47
6
0
28 Apr 2021
Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Manuel Haussmann
S. Gerwinn
Andreas Look
Barbara Rakitsch
M. Kandemir
86
16
0
17 Jun 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDL
UQCV
71
8
0
22 May 2020
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck
Alec Koppel
Hrusikesha Pradhan
K. Rajawat
36
32
0
23 Apr 2020
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees
Jonas Rothfuss
Vincent Fortuin
Martin Josifoski
Andreas Krause
UQCV
93
127
0
13 Feb 2020
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
67
8
0
10 Jun 2019
Posterior Variance Analysis of Gaussian Processes with Application to Average Learning Curves
Armin Lederer
Jonas Umlauft
Sandra Hirche
62
25
0
04 Jun 2019
1