ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00866
  4. Cited By
Efficient Neural Network Robustness Certification with General
  Activation Functions

Efficient Neural Network Robustness Certification with General Activation Functions

2 November 2018
Huan Zhang
Tsui-Wei Weng
Pin-Yu Chen
Cho-Jui Hsieh
Luca Daniel
    AAML
ArXivPDFHTML

Papers citing "Efficient Neural Network Robustness Certification with General Activation Functions"

50 / 177 papers shown
Title
Robustness of Graph Neural Networks at Scale
Robustness of Graph Neural Networks at Scale
Simon Geisler
Tobias Schmidt
Hakan cSirin
Daniel Zügner
Aleksandar Bojchevski
Stephan Günnemann
AAML
30
126
0
26 Oct 2021
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
357
0
04 Oct 2021
Neural Network Verification in Control
Neural Network Verification in Control
M. Everett
AAML
34
16
0
30 Sep 2021
ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via
  Convex Relaxation
ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via Convex Relaxation
Chuangchuang Sun
Dong-Ki Kim
Jonathan P. How
AAML
35
19
0
14 Sep 2021
Shared Certificates for Neural Network Verification
Shared Certificates for Neural Network Verification
Marc Fischer
C. Sprecher
Dimitar I. Dimitrov
Gagandeep Singh
Martin Vechev
AAML
28
12
0
01 Sep 2021
The Second International Verification of Neural Networks Competition
  (VNN-COMP 2021): Summary and Results
The Second International Verification of Neural Networks Competition (VNN-COMP 2021): Summary and Results
Stanley Bak
Changliu Liu
Taylor T. Johnson
NAI
30
112
0
31 Aug 2021
Reachability Analysis of Neural Feedback Loops
Reachability Analysis of Neural Feedback Loops
M. Everett
Golnaz Habibi
Chuangchuang Sun
Jonathan P. How
19
53
0
09 Aug 2021
Neural Network Branch-and-Bound for Neural Network Verification
Neural Network Branch-and-Bound for Neural Network Verification
Florian Jaeckle
Jingyue Lu
M. P. Kumar
18
8
0
27 Jul 2021
On the Certified Robustness for Ensemble Models and Beyond
On the Certified Robustness for Ensemble Models and Beyond
Zhuolin Yang
Linyi Li
Xiaojun Xu
B. Kailkhura
Tao Xie
Bo-wen Li
AAML
29
48
0
22 Jul 2021
GoTube: Scalable Stochastic Verification of Continuous-Depth Models
GoTube: Scalable Stochastic Verification of Continuous-Depth Models
Sophie Gruenbacher
Mathias Lechner
Ramin Hasani
Daniela Rus
T. Henzinger
S. Smolka
Radu Grosu
26
17
0
18 Jul 2021
Provable Lipschitz Certification for Generative Models
Provable Lipschitz Certification for Generative Models
Matt Jordan
A. Dimakis
22
14
0
06 Jul 2021
Scalable Certified Segmentation via Randomized Smoothing
Scalable Certified Segmentation via Randomized Smoothing
Marc Fischer
Maximilian Baader
Martin Vechev
20
38
0
01 Jul 2021
POLAR: A Polynomial Arithmetic Framework for Verifying Neural-Network
  Controlled Systems
POLAR: A Polynomial Arithmetic Framework for Verifying Neural-Network Controlled Systems
Chao Huang
Jiameng Fan
Zhilu Wang
Yixuan Wang
Weichao Zhou
Jiajun Li
Xin Chen
Wenchao Li
Qi Zhu
40
48
0
25 Jun 2021
Failing with Grace: Learning Neural Network Controllers that are
  Boundedly Unsafe
Failing with Grace: Learning Neural Network Controllers that are Boundedly Unsafe
Panagiotis Vlantis
Leila J. Bridgeman
Michael M. Zavlanos
40
0
0
22 Jun 2021
DeepSplit: Scalable Verification of Deep Neural Networks via Operator
  Splitting
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
Shaoru Chen
Eric Wong
Zico Kolter
Mahyar Fazlyab
47
15
0
16 Jun 2021
DNNV: A Framework for Deep Neural Network Verification
DNNV: A Framework for Deep Neural Network Verification
David Shriver
Sebastian G. Elbaum
Matthew B. Dwyer
21
31
0
26 May 2021
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure
  DNN Accelerators
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators
David Stutz
Nandhini Chandramoorthy
Matthias Hein
Bernt Schiele
AAML
MQ
24
18
0
16 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
41
65
0
09 Apr 2021
A Review of Formal Methods applied to Machine Learning
A Review of Formal Methods applied to Machine Learning
Caterina Urban
Antoine Miné
46
55
0
06 Apr 2021
Adaptive Clustering of Robust Semantic Representations for Adversarial
  Image Purification
Adaptive Clustering of Robust Semantic Representations for Adversarial Image Purification
S. Silva
Arun Das
I. Scarff
Peyman Najafirad
AAML
20
1
0
05 Apr 2021
PRIMA: General and Precise Neural Network Certification via Scalable
  Convex Hull Approximations
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
41
90
0
05 Mar 2021
Adversarial Robustness with Non-uniform Perturbations
Adversarial Robustness with Non-uniform Perturbations
Ece Naz Erdemir
Jeffrey Bickford
Luca Melis
Sergul Aydore
AAML
24
26
0
24 Feb 2021
Make Sure You're Unsure: A Framework for Verifying Probabilistic
  Specifications
Make Sure You're Unsure: A Framework for Verifying Probabilistic Specifications
Leonard Berrada
Sumanth Dathathri
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
J. Uesato
Sven Gowal
M. P. Kumar
AAML
OOD
30
17
0
18 Feb 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
126
0
16 Feb 2021
On the Paradox of Certified Training
On the Paradox of Certified Training
Nikola Jovanović
Mislav Balunović
Maximilian Baader
Martin Vechev
OOD
28
13
0
12 Feb 2021
Fast Training of Provably Robust Neural Networks by SingleProp
Fast Training of Provably Robust Neural Networks by SingleProp
Akhilan Boopathy
Tsui-Wei Weng
Sijia Liu
Pin-Yu Chen
Gaoyuan Zhang
Luca Daniel
AAML
11
7
0
01 Feb 2021
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Brendon G. Anderson
Ziye Ma
Jingqi Li
Somayeh Sojoudi
60
1
0
22 Jan 2021
Robust Reinforcement Learning on State Observations with Learned Optimal
  Adversary
Robust Reinforcement Learning on State Observations with Learned Optimal Adversary
Huan Zhang
Hongge Chen
Duane S. Boning
Cho-Jui Hsieh
67
163
0
21 Jan 2021
DSRNA: Differentiable Search of Robust Neural Architectures
DSRNA: Differentiable Search of Robust Neural Architectures
Ramtin Hosseini
Xingyi Yang
P. Xie
OOD
AAML
29
50
0
11 Dec 2020
Almost Tight L0-norm Certified Robustness of Top-k Predictions against
  Adversarial Perturbations
Almost Tight L0-norm Certified Robustness of Top-k Predictions against Adversarial Perturbations
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Hongbin Liu
Neil Zhenqiang Gong
21
24
0
15 Nov 2020
An efficient nonconvex reformulation of stagewise convex optimization
  problems
An efficient nonconvex reformulation of stagewise convex optimization problems
Rudy Bunel
Oliver Hinder
Srinadh Bhojanapalli
Krishnamurthy Dvijotham
Dvijotham
OffRL
35
14
0
27 Oct 2020
Global Optimization of Objective Functions Represented by ReLU Networks
Global Optimization of Objective Functions Represented by ReLU Networks
Christopher A. Strong
Haoze Wu
Aleksandar Zeljić
Kyle D. Julian
Guy Katz
Clark W. Barrett
Mykel J. Kochenderfer
AAML
17
33
0
07 Oct 2020
Adversarial Boot Camp: label free certified robustness in one epoch
Adversarial Boot Camp: label free certified robustness in one epoch
Ryan Campbell
Chris Finlay
Adam M. Oberman
AAML
28
0
0
05 Oct 2020
Analysis of three dimensional potential problems in non-homogeneous
  media with physics-informed deep collocation method using material transfer
  learning and sensitivity analysis
Analysis of three dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis
Hongwei Guo
X. Zhuang
Pengwan Chen
N. Alajlan
Timon Rabczuk
27
58
0
03 Oct 2020
Data-Driven Certification of Neural Networks with Random Input Noise
Data-Driven Certification of Neural Networks with Random Input Noise
Brendon G. Anderson
Somayeh Sojoudi
AAML
17
11
0
02 Oct 2020
Assessing Robustness of Text Classification through Maximal Safe Radius
  Computation
Assessing Robustness of Text Classification through Maximal Safe Radius Computation
Emanuele La Malfa
Min Wu
Luca Laurenti
Benjie Wang
Anthony Hartshorn
Marta Z. Kwiatkowska
AAML
20
18
0
01 Oct 2020
SoK: Certified Robustness for Deep Neural Networks
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
38
128
0
09 Sep 2020
Adversarial Training and Provable Robustness: A Tale of Two Objectives
Adversarial Training and Provable Robustness: A Tale of Two Objectives
Jiameng Fan
Wenchao Li
AAML
23
20
0
13 Aug 2020
Robust Deep Reinforcement Learning through Adversarial Loss
Robust Deep Reinforcement Learning through Adversarial Loss
Tuomas P. Oikarinen
Wang Zhang
Alexandre Megretski
Luca Daniel
Tsui-Wei Weng
AAML
49
94
0
05 Aug 2020
Scaling Polyhedral Neural Network Verification on GPUs
Scaling Polyhedral Neural Network Verification on GPUs
Christoph Müller
F. Serre
Gagandeep Singh
Markus Püschel
Martin Vechev
AAML
29
56
0
20 Jul 2020
The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron
  Relaxations for Neural Network Verification
The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification
Christian Tjandraatmadja
Ross Anderson
Joey Huchette
Will Ma
Krunal Patel
J. Vielma
AAML
27
89
0
24 Jun 2020
Verifying Individual Fairness in Machine Learning Models
Verifying Individual Fairness in Machine Learning Models
Philips George John
Deepak Vijaykeerthy
Diptikalyan Saha
FaML
27
57
0
21 Jun 2020
SPLASH: Learnable Activation Functions for Improving Accuracy and
  Adversarial Robustness
SPLASH: Learnable Activation Functions for Improving Accuracy and Adversarial Robustness
Mohammadamin Tavakoli
Forest Agostinelli
Pierre Baldi
AAML
FAtt
36
39
0
16 Jun 2020
Probabilistic Safety for Bayesian Neural Networks
Probabilistic Safety for Bayesian Neural Networks
Matthew Wicker
Luca Laurenti
A. Patané
Marta Z. Kwiatkowska
AAML
14
52
0
21 Apr 2020
NNV: The Neural Network Verification Tool for Deep Neural Networks and
  Learning-Enabled Cyber-Physical Systems
NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems
Hoang-Dung Tran
Xiaodong Yang
Diego Manzanas Lopez
Patrick Musau
L. V. Nguyen
Weiming Xiang
Stanley Bak
Taylor T. Johnson
34
239
0
12 Apr 2020
Verification of Deep Convolutional Neural Networks Using ImageStars
Verification of Deep Convolutional Neural Networks Using ImageStars
Hoang-Dung Tran
Stanley Bak
Weiming Xiang
Taylor T. Johnson
AAML
20
127
0
12 Apr 2020
Certifiable Robustness to Adversarial State Uncertainty in Deep
  Reinforcement Learning
Certifiable Robustness to Adversarial State Uncertainty in Deep Reinforcement Learning
Michael Everett
Bjorn Lutjens
Jonathan P. How
AAML
20
41
0
11 Apr 2020
Robust Deep Reinforcement Learning against Adversarial Perturbations on
  State Observations
Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations
Huan Zhang
Hongge Chen
Chaowei Xiao
Bo-wen Li
Mingyan D. Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
47
261
0
19 Mar 2020
Exploiting Verified Neural Networks via Floating Point Numerical Error
Exploiting Verified Neural Networks via Floating Point Numerical Error
Kai Jia
Martin Rinard
AAML
37
34
0
06 Mar 2020
Learning Certified Individually Fair Representations
Learning Certified Individually Fair Representations
Anian Ruoss
Mislav Balunović
Marc Fischer
Martin Vechev
FaML
15
92
0
24 Feb 2020
Previous
1234
Next