Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.01057
Cited By
Semidefinite relaxations for certifying robustness to adversarial examples
2 November 2018
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Semidefinite relaxations for certifying robustness to adversarial examples"
44 / 94 papers shown
Title
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
Mikhail Aleksandrovich Pautov
Nurislam Tursynbek
Marina Munkhoeva
Nikita Muravev
Aleksandr Petiushko
Ivan V. Oseledets
AAML
52
15
0
22 Sep 2021
ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via Convex Relaxation
Chuangchuang Sun
Dong-Ki Kim
Jonathan P. How
AAML
31
19
0
14 Sep 2021
Certified Robustness via Randomized Smoothing over Multiplicative Parameters of Input Transformations
Nikita Muravev
Aleksandr Petiushko
AAML
13
7
0
28 Jun 2021
Policy Smoothing for Provably Robust Reinforcement Learning
Aounon Kumar
Alexander Levine
S. Feizi
AAML
20
55
0
21 Jun 2021
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
Shaoru Chen
Eric Wong
Zico Kolter
Mahyar Fazlyab
47
15
0
16 Jun 2021
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
41
90
0
05 Mar 2021
Adversarial Robustness with Non-uniform Perturbations
Ece Naz Erdemir
Jeffrey Bickford
Luca Melis
Sergul Aydore
AAML
22
26
0
24 Feb 2021
Make Sure You're Unsure: A Framework for Verifying Probabilistic Specifications
Leonard Berrada
Sumanth Dathathri
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
J. Uesato
Sven Gowal
M. P. Kumar
AAML
OOD
30
17
0
18 Feb 2021
Reduced-Order Neural Network Synthesis with Robustness Guarantees
R. Drummond
M. Turner
S. Duncan
19
9
0
18 Feb 2021
On the Paradox of Certified Training
Nikola Jovanović
Mislav Balunović
Maximilian Baader
Martin Vechev
OOD
28
13
0
12 Feb 2021
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Brendon G. Anderson
Ziye Ma
Jingqi Li
Somayeh Sojoudi
58
1
0
22 Jan 2021
Adversarially Robust Classification based on GLRT
Bhagyashree Puranik
Upamanyu Madhow
Ramtin Pedarsani
VLM
AAML
18
4
0
16 Nov 2020
Domain adaptation under structural causal models
Yuansi Chen
Peter Buhlmann
CML
OOD
AI4CE
31
38
0
29 Oct 2020
Utility is in the Eye of the User: A Critique of NLP Leaderboards
Kawin Ethayarajh
Dan Jurafsky
ELM
24
51
0
29 Sep 2020
Certifying Confidence via Randomized Smoothing
Aounon Kumar
Alexander Levine
S. Feizi
Tom Goldstein
UQCV
28
39
0
17 Sep 2020
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
30
128
0
09 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
Adversarial Training and Provable Robustness: A Tale of Two Objectives
Jiameng Fan
Wenchao Li
AAML
17
20
0
13 Aug 2020
Robust Machine Learning via Privacy/Rate-Distortion Theory
Ye Wang
Shuchin Aeron
Adnan Siraj Rakin
T. Koike-Akino
P. Moulin
OOD
14
6
0
22 Jul 2020
Scaling Polyhedral Neural Network Verification on GPUs
Christoph Müller
F. Serre
Gagandeep Singh
Markus Püschel
Martin Vechev
AAML
29
56
0
20 Jul 2020
The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification
Christian Tjandraatmadja
Ross Anderson
Joey Huchette
Will Ma
Krunal Patel
J. Vielma
AAML
27
89
0
24 Jun 2020
Verifying Individual Fairness in Machine Learning Models
Philips George John
Deepak Vijaykeerthy
Diptikalyan Saha
FaML
21
57
0
21 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
27
45
0
28 May 2020
Exploiting Verified Neural Networks via Floating Point Numerical Error
Kai Jia
Martin Rinard
AAML
37
34
0
06 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
35
785
0
26 Feb 2020
Lagrangian Decomposition for Neural Network Verification
Rudy Bunel
Alessandro De Palma
Alban Desmaison
Krishnamurthy Dvijotham
Pushmeet Kohli
Philip H. S. Torr
M. P. Kumar
19
50
0
24 Feb 2020
Robustness Verification for Transformers
Zhouxing Shi
Huan Zhang
Kai-Wei Chang
Minlie Huang
Cho-Jui Hsieh
AAML
19
104
0
16 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
30
64
0
11 Feb 2020
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen
J. Lasserre
Victor Magron
Edouard Pauwels
36
3
0
10 Feb 2020
Random Smoothing Might be Unable to Certify
ℓ
∞
\ell_\infty
ℓ
∞
Robustness for High-Dimensional Images
Avrim Blum
Travis Dick
N. Manoj
Hongyang R. Zhang
AAML
23
79
0
10 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
81
1,158
0
12 Jan 2020
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
28
36
0
26 Dec 2019
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
37
13
0
20 Nov 2019
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
33
9
0
31 Oct 2019
Defending Against Physically Realizable Attacks on Image Classification
Tong Wu
Liang Tong
Yevgeniy Vorobeychik
AAML
14
125
0
20 Sep 2019
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
34
176
0
17 Aug 2019
ART: Abstraction Refinement-Guided Training for Provably Correct Neural Networks
Xuankang Lin
He Zhu
R. Samanta
Suresh Jagannathan
AAML
27
28
0
17 Jul 2019
Certifiable Robustness and Robust Training for Graph Convolutional Networks
Daniel Zügner
Stephan Günnemann
OffRL
31
160
0
28 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
31
535
0
09 Jun 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
35
1,227
0
29 Apr 2019
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
32
75
0
25 Mar 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
23
210
0
21 Feb 2019
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
234
1,837
0
03 Feb 2017
Previous
1
2