Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.01212
Cited By
The distribution of the Lasso: Uniform control over sparse balls and adaptive parameter tuning
3 November 2018
Léo Miolane
Andrea Montanari
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The distribution of the Lasso: Uniform control over sparse balls and adaptive parameter tuning"
35 / 35 papers shown
Title
Optimal Implicit Bias in Linear Regression
K. N. Varma
Babak Hassibi
11
0
0
20 Jun 2025
Simultaneous analysis of approximate leave-one-out cross-validation and mean-field inference
Pierre C Bellec
112
0
0
05 Jan 2025
Derivatives and residual distribution of regularized M-estimators with application to adaptive tuning
Pierre C. Bellec
Yi Shen
124
13
0
03 Jan 2025
A High Dimensional Statistical Model for Adversarial Training: Geometry and Trade-Offs
Kasimir Tanner
Matteo Vilucchio
Bruno Loureiro
Florent Krzakala
AAML
97
1
0
31 Dec 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
175
1
0
18 Apr 2024
Regularized Linear Regression for Binary Classification
D. Akhtiamov
Reza Ghane
Babak Hassibi
NoLa
51
3
0
03 Nov 2023
High-dimensional Contextual Bandit Problem without Sparsity
Junpei Komiyama
Masaaki Imaizumi
78
2
0
19 Jun 2023
Approximate message passing from random initialization with applications to
Z
2
\mathbb{Z}_{2}
Z
2
synchronization
Gen Li
Wei Fan
Yuting Wei
95
12
0
07 Feb 2023
Gaussian random projections of convex cones: approximate kinematic formulae and applications
Q. Han
Hua Ren
76
3
0
11 Dec 2022
Sudakov-Fernique post-AMP, and a new proof of the local convexity of the TAP free energy
Michael Celentano
94
21
0
19 Aug 2022
Exact spectral norm error of sample covariance
Q. Han
70
8
0
27 Jul 2022
Algorithmic Gaussianization through Sketching: Converting Data into Sub-gaussian Random Designs
Michal Derezinski
81
5
0
21 Jun 2022
Overparametrized linear dimensionality reductions: From projection pursuit to two-layer neural networks
Andrea Montanari
Kangjie Zhou
82
2
0
14 Jun 2022
Noisy linear inverse problems under convex constraints: Exact risk asymptotics in high dimensions
Q. Han
65
3
0
20 Jan 2022
Comparing Classes of Estimators: When does Gradient Descent Beat Ridge Regression in Linear Models?
Dominic Richards
Yan Sun
Patrick Rebeschini
68
3
0
26 Aug 2021
Asymptotic normality of robust
M
M
M
-estimators with convex penalty
Pierre C. Bellec
Yiwei Shen
Cun-Hui Zhang
43
12
0
08 Jul 2021
Local convexity of the TAP free energy and AMP convergence for Z2-synchronization
Michael Celentano
Z. Fan
Song Mei
FedML
88
23
0
21 Jun 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
129
96
0
02 Mar 2021
Learning curves of generic features maps for realistic datasets with a teacher-student model
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
116
140
0
16 Feb 2021
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
86
51
0
16 Dec 2020
Theoretical Insights Into Multiclass Classification: A High-dimensional Asymptotic View
Christos Thrampoulidis
Samet Oymak
Mahdi Soltanolkotabi
73
43
0
16 Nov 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
105
63
0
21 Oct 2020
Out-of-sample error estimate for robust M-estimators with convex penalty
Pierre C. Bellec
129
17
0
26 Aug 2020
The Lasso with general Gaussian designs with applications to hypothesis testing
Michael Celentano
Andrea Montanari
Yuting Wei
127
64
0
27 Jul 2020
Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in High Dimensions
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
84
29
0
16 Jun 2020
Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
Changxiao Cai
H. Vincent Poor
Yuxin Chen
118
23
0
15 Jun 2020
Aggregated hold out for sparse linear regression with a robust loss function
G. Maillard
FedML
70
1
0
26 Feb 2020
Sharp Asymptotics and Optimal Performance for Inference in Binary Models
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
84
26
0
17 Feb 2020
De-biasing convex regularized estimators and interval estimation in linear models
Pierre C. Bellec
Cun-Hui Zhang
128
20
0
26 Dec 2019
The Impact of Regularization on High-dimensional Logistic Regression
Fariborz Salehi
Ehsan Abbasi
B. Hassibi
136
103
0
10 Jun 2019
Approximate Cross-Validation in High Dimensions with Guarantees
William T. Stephenson
Tamara Broderick
45
2
0
31 May 2019
SLOPE for Sparse Linear Regression:Asymptotics and Optimal Regularization
Hong Hu
Yue M. Lu
42
2
0
27 Mar 2019
Fundamental Barriers to High-Dimensional Regression with Convex Penalties
Michael Celentano
Andrea Montanari
96
48
0
25 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
288
747
0
19 Mar 2019
On cross-validated Lasso in high dimensions
Denis Chetverikov
Z. Liao
Victor Chernozhukov
97
81
0
07 May 2016
1