Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.01704
Cited By
ReLeQ: A Reinforcement Learning Approach for Deep Quantization of Neural Networks
5 November 2018
Ahmed T. Elthakeb
Prannoy Pilligundla
Fatemehsadat Mireshghallah
Amir Yazdanbakhsh
H. Esmaeilzadeh
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ReLeQ: A Reinforcement Learning Approach for Deep Quantization of Neural Networks"
8 / 8 papers shown
Title
ARQ: A Mixed-Precision Quantization Framework for Accurate and Certifiably Robust DNNs
Yuchen Yang
Shubham Ugare
Yifan Zhao
Gagandeep Singh
Sasa Misailovic
MQ
21
0
0
31 Oct 2024
FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search
Jordan Dotzel
Gang Wu
Andrew Li
M. Umar
Yun Ni
...
Liqun Cheng
Martin G. Dixon
N. Jouppi
Quoc V. Le
Sheng R. Li
MQ
22
3
0
07 Aug 2023
Mixed-Precision Neural Networks: A Survey
M. Rakka
M. Fouda
Pramod P. Khargonekar
Fadi J. Kurdahi
MQ
14
11
0
11 Aug 2022
Learnable Mixed-precision and Dimension Reduction Co-design for Low-storage Activation
Yu-Shan Tai
Cheng-Yang Chang
Chieh-Fang Teng
AnYeu
A. Wu
14
5
0
16 Jul 2022
GeneCAI: Genetic Evolution for Acquiring Compact AI
Mojan Javaheripi
Mohammad Samragh
T. Javidi
F. Koushanfar
24
9
0
08 Apr 2020
Chameleon: Adaptive Code Optimization for Expedited Deep Neural Network Compilation
Byung Hoon Ahn
Prannoy Pilligundla
Amir Yazdanbakhsh
H. Esmaeilzadeh
ODL
53
80
0
23 Jan 2020
Towards Efficient Training for Neural Network Quantization
Qing Jin
Linjie Yang
Zhenyu A. Liao
MQ
11
42
0
21 Dec 2019
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
264
5,290
0
05 Nov 2016
1