Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03567
Cited By
Biologically-plausible learning algorithms can scale to large datasets
8 November 2018
Y. Chitour
Honglin Chen
Zhenyu Liao
T. Poggio
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Biologically-plausible learning algorithms can scale to large datasets"
24 / 24 papers shown
Title
Self-Assembly of a Biologically Plausible Learning Circuit
Q. Liao
Liu Ziyin
Yulu Gan
Brian Cheung
Mark Harnett
Tomaso Poggio
57
0
0
31 Dec 2024
Improving equilibrium propagation without weight symmetry through Jacobian homeostasis
Axel Laborieux
Friedemann Zenke
30
7
0
05 Sep 2023
Brain-inspired learning in artificial neural networks: a review
Samuel Schmidgall
Jascha Achterberg
Thomas Miconi
Louis Kirsch
Rojin Ziaei
S. P. Hajiseyedrazi
Jason Eshraghian
36
52
0
18 May 2023
Is Bio-Inspired Learning Better than Backprop? Benchmarking Bio Learning vs. Backprop
Manas Gupta
Sarthak Ketanbhai Modi
Hang Zhang
Joon Hei Lee
J. Lim
29
7
0
09 Dec 2022
A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive Coding Networks
Tommaso Salvatori
Yuhang Song
Yordan Yordanov
Beren Millidge
Zheng R. Xu
Lei Sha
Cornelius Emde
Rafal Bogacz
Thomas Lukasiewicz
34
10
0
16 Nov 2022
Scaling Forward Gradient With Local Losses
Mengye Ren
Simon Kornblith
Renjie Liao
Geoffrey E. Hinton
81
49
0
07 Oct 2022
Towards Scaling Difference Target Propagation by Learning Backprop Targets
M. Ernoult
Fabrice Normandin
A. Moudgil
Sean Spinney
Eugene Belilovsky
Irina Rish
Blake A. Richards
Yoshua Bengio
19
28
0
31 Jan 2022
Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass
Giorgia Dellaferrera
Gabriel Kreiman
29
53
0
27 Jan 2022
Benchmarking the Accuracy and Robustness of Feedback Alignment Algorithms
Albert Jiménez Sanfiz
Mohamed Akrout
OOD
AAML
20
8
0
30 Aug 2021
How to Train Your Wide Neural Network Without Backprop: An Input-Weight Alignment Perspective
Akhilan Boopathy
Ila Fiete
41
9
0
15 Jun 2021
Tightening the Biological Constraints on Gradient-Based Predictive Coding
Nick Alonso
Emre Neftci
27
7
0
30 Apr 2021
Reverse Differentiation via Predictive Coding
Tommaso Salvatori
Yuhang Song
Thomas Lukasiewicz
Rafal Bogacz
Zhenghua Xu
PINN
30
26
0
08 Mar 2021
Training Deep Architectures Without End-to-End Backpropagation: A Survey on the Provably Optimal Methods
Shiyu Duan
José C. Príncipe
MQ
38
3
0
09 Jan 2021
Biological credit assignment through dynamic inversion of feedforward networks
William F. Podlaski
C. Machens
27
19
0
10 Jul 2020
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures
Julien Launay
Iacopo Poli
Franccois Boniface
Florent Krzakala
41
63
0
23 Jun 2020
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
24
34
0
12 Jun 2020
Two Routes to Scalable Credit Assignment without Weight Symmetry
D. Kunin
Aran Nayebi
Javier Sagastuy-Breña
Surya Ganguli
Jonathan M. Bloom
Daniel L. K. Yamins
34
32
0
28 Feb 2020
Large-Scale Gradient-Free Deep Learning with Recursive Local Representation Alignment
Alexander Ororbia
A. Mali
Daniel Kifer
C. Lee Giles
23
2
0
10 Feb 2020
Principled Training of Neural Networks with Direct Feedback Alignment
Julien Launay
Iacopo Poli
Florent Krzakala
21
35
0
11 Jun 2019
Putting An End to End-to-End: Gradient-Isolated Learning of Representations
Sindy Löwe
Peter O'Connor
Bastiaan S. Veeling
SSL
11
143
0
28 May 2019
Deep Learning without Weight Transport
Mohamed Akrout
Collin Wilson
Peter C. Humphreys
Timothy Lillicrap
D. Tweed
CVBM
29
132
0
10 Apr 2019
Decoupled Greedy Learning of CNNs
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
11
114
0
23 Jan 2019
Feedback alignment in deep convolutional networks
Theodore H. Moskovitz
Ashok Litwin-Kumar
L. F. Abbott
27
60
0
12 Dec 2018
Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex
Q. Liao
T. Poggio
213
255
0
13 Apr 2016
1