ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03695
  4. Cited By
Deep Learning Predicts Hip Fracture using Confounding Patient and
  Healthcare Variables

Deep Learning Predicts Hip Fracture using Confounding Patient and Healthcare Variables

8 November 2018
Giovanni Sutanto
J. Zech
Luke Oakden-Rayner
Yevgen Chebotar
Manway Liu
William Gale
M. McConnell
Ankur Handa
Thomas M. Snyder
D. Fox
    AI4CE
    OOD
ArXivPDFHTML

Papers citing "Deep Learning Predicts Hip Fracture using Confounding Patient and Healthcare Variables"

19 / 19 papers shown
Title
Don't be fooled: label leakage in explanation methods and the importance
  of their quantitative evaluation
Don't be fooled: label leakage in explanation methods and the importance of their quantitative evaluation
N. Jethani
A. Saporta
Rajesh Ranganath
FAtt
29
10
0
24 Feb 2023
Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers
Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers
Wanqian Yang
Polina Kirichenko
Micah Goldblum
A. Wilson
DRL
27
10
0
28 Nov 2022
Confound-leakage: Confound Removal in Machine Learning Leads to Leakage
Confound-leakage: Confound Removal in Machine Learning Leads to Leakage
Sami U Hamdan
Bradley C. Love
G. V. Polier
Susanne Weis
H. Schwender
Simon B. Eickhoff
K. Patil
16
8
0
17 Oct 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training
  Dynamics
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
39
27
0
20 Sep 2022
Deep Learning-Based Automatic Diagnosis System for Developmental Dysplasia of the Hip
Deep Learning-Based Automatic Diagnosis System for Developmental Dysplasia of the Hip
Yang Li
Leo Yan Li-Han
H. Tian
24
1
0
07 Sep 2022
Rethinking Machine Learning Model Evaluation in Pathology
Rethinking Machine Learning Model Evaluation in Pathology
Syed Ashar Javed
Dinkar Juyal
Zahil Shanis
S. Chakraborty
Harsha Pokkalla
Aaditya (Adi) Prakash
LM&MA
25
12
0
11 Apr 2022
Debiasing pipeline improves deep learning model generalization for X-ray
  based lung nodule detection
Debiasing pipeline improves deep learning model generalization for X-ray based lung nodule detection
M. J. Horry
Subrata Chakraborty
B. Pradhan
M. Paul
Jing Zhu
H. Loh
P. Barua
Usha R. Acharya
AI4CE
33
7
0
24 Jan 2022
Randomness In Neural Network Training: Characterizing The Impact of
  Tooling
Randomness In Neural Network Training: Characterizing The Impact of Tooling
Donglin Zhuang
Xingyao Zhang
S. Song
Sara Hooker
25
75
0
22 Jun 2021
Machine learning-based analysis of hyperspectral images for automated
  sepsis diagnosis
Machine learning-based analysis of hyperspectral images for automated sepsis diagnosis
Maximilian Dietrich
Silvia Seidlitz
Nicholas Schreck
Manuel Wiesenfarth
Patrick Godau
...
Felix Nickel
Beat P. Müller-Stich
A. Kopp-Schneider
Markus A. Weigand
Lena Maier-Hein
25
10
0
15 Jun 2021
Disrupting Model Training with Adversarial Shortcuts
Disrupting Model Training with Adversarial Shortcuts
Ivan Evtimov
Ian Covert
Aditya Kusupati
Tadayoshi Kohno
AAML
18
10
0
12 Jun 2021
The Federated Tumor Segmentation (FeTS) Challenge
The Federated Tumor Segmentation (FeTS) Challenge
Sarthak Pati
Ujjwal Baid
M. Zenk
Brandon Edwards
Micah J. Sheller
...
Lena Maier-Hein
Jens Kleesiek
Bjoern H. Menze
Klaus Maier-Hein
Spyridon Bakas
FedML
OOD
41
72
0
12 May 2021
IAIA-BL: A Case-based Interpretable Deep Learning Model for
  Classification of Mass Lesions in Digital Mammography
IAIA-BL: A Case-based Interpretable Deep Learning Model for Classification of Mass Lesions in Digital Mammography
A. Barnett
F. Schwartz
Chaofan Tao
Chaofan Chen
Yinhao Ren
J. Lo
Cynthia Rudin
31
133
0
23 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Teaching with Commentaries
Teaching with Commentaries
Aniruddh Raghu
M. Raghu
Simon Kornblith
D. Duvenaud
Geoffrey E. Hinton
12
24
0
05 Nov 2020
Cough Against COVID: Evidence of COVID-19 Signature in Cough Sounds
Cough Against COVID: Evidence of COVID-19 Signature in Cough Sounds
Piyush Bagad
Aman Dalmia
Jigar Doshi
Arsha Nagrani
Parag Bhamare
A. Mahale
S. Rane
N. Agarwal
R. Panicker
26
112
0
17 Sep 2020
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
38
120
0
26 Mar 2020
Making deep neural networks right for the right scientific reasons by
  interacting with their explanations
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P. Schramowski
Wolfgang Stammer
Stefano Teso
Anna Brugger
Xiaoting Shao
Hans-Georg Luigs
Anne-Katrin Mahlein
Kristian Kersting
23
207
0
15 Jan 2020
Saliency is a Possible Red Herring When Diagnosing Poor Generalization
Saliency is a Possible Red Herring When Diagnosing Poor Generalization
J. Viviano
B. Simpson
Francis Dutil
Yoshua Bengio
Joseph Paul Cohen
FAtt
15
6
0
01 Oct 2019
Hidden Stratification Causes Clinically Meaningful Failures in Machine
  Learning for Medical Imaging
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging
Luke Oakden-Rayner
Jared A. Dunnmon
G. Carneiro
Christopher Ré
OOD
16
372
0
27 Sep 2019
1