Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.04026
Cited By
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
9 November 2018
Yibo Yang
P. Perdikaris
AI4CE
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Uncertainty Quantification in Physics-Informed Neural Networks"
50 / 135 papers shown
Title
Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management
Aleksandra Pachalieva
Daniel O’Malley
D. Harp
Hari S. Viswanathan
AI4CE
20
20
0
21 Jun 2022
Quantifying Uncertainty In Traffic State Estimation Using Generative Adversarial Networks
Zhaobin Mo
Yongjie Fu
Xuan Di
33
11
0
19 Jun 2022
TrafficFlowGAN: Physics-informed Flow based Generative Adversarial Network for Uncertainty Quantification
Zhaobin Mo
Yongjie Fu
Daran Xu
Xuan Di
AI4CE
25
17
0
19 Jun 2022
Transfer Learning as a Method to Reproduce High-Fidelity NLTE Opacities in Simulations
Michael D. Vander Wal
R. McClarren
K. Humbird
AI4CE
27
4
0
28 May 2022
Bayesian Physics-Informed Extreme Learning Machine for Forward and Inverse PDE Problems with Noisy Data
Xu Liu
Wenjuan Yao
Wei Peng
Weien Zhou
PINN
AI4CE
49
25
0
14 May 2022
A hybrid data driven-physics constrained Gaussian process regression framework with deep kernel for uncertainty quantification
Che-Chia Chang
T. Zeng
GP
17
5
0
13 May 2022
Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical systems
K. Linka
Amelie Schäfer
Xuhui Meng
Zongren Zou
George Karniadakis
E. Kuhl
OOD
PINN
AI4CE
43
110
0
12 May 2022
Multi-resolution partial differential equations preserved learning framework for spatiotemporal dynamics
Xin-Yang Liu
Min Zhu
Lu Lu
Hao Sun
Jian-Xun Wang
PINN
AI4CE
36
45
0
09 May 2022
Quantum Extremal Learning
Savvas Varsamopoulos
E. Philip
H. Vlijmen
Sairam Menon
Ann Vos
N. Dyubankova
B. Torfs
Anthony Rowe
V. Elfving
25
5
0
05 May 2022
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using DeepONets
Subhayan De
Matthew J. Reynolds
M. Hassanaly
Ryan N. King
Alireza Doostan
AI4CE
36
37
0
03 Apr 2022
PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic differential equations
Weiheng Zhong
Hadi Meidani
DRL
30
37
0
21 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
37
40
0
06 Mar 2022
Physics-informed neural networks for inverse problems in supersonic flows
Ameya Dilip Jagtap
Zhiping Mao
Nikolaus Adams
George Karniadakis
PINN
26
201
0
23 Feb 2022
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
Katiana Kontolati
Dimitrios Loukrezis
D. D. Giovanis
Lohit Vandanapu
Michael D. Shields
32
40
0
09 Feb 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
31
1,190
0
14 Jan 2022
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
36
25
0
28 Dec 2021
How to Avoid Trivial Solutions in Physics-Informed Neural Networks
Raphael Leiteritz
Dirk Pflüger
AI4CE
PINN
20
21
0
10 Dec 2021
Learning To Estimate Regions Of Attraction Of Autonomous Dynamical Systems Using Physics-Informed Neural Networks
Cody Scharzenberger
Joe Hays
40
3
0
18 Nov 2021
Learning Free-Surface Flow with Physics-Informed Neural Networks
Raphael Leiteritz
Marcel Hurler
Dirk Pflüger
PINN
AI4CE
33
7
0
17 Nov 2021
CAN-PINN: A Fast Physics-Informed Neural Network Based on Coupled-Automatic-Numerical Differentiation Method
P. Chiu
Jian Cheng Wong
C. Ooi
M. Dao
Yew-Soon Ong
PINN
36
207
0
29 Oct 2021
Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN
Hamza Boukraichi
N. Akkari
F. Casenave
David Ryckelynck
AI4CE
15
3
0
26 Oct 2021
Recipes for when Physics Fails: Recovering Robust Learning of Physics Informed Neural Networks
Minh Nguyen
Luke McLennan
T. Andeen
Avik Roy
PINN
21
27
0
26 Oct 2021
Prediction of liquid fuel properties using machine learning models with Gaussian processes and probabilistic conditional generative learning
Rodolfo S. M. Freitas
Ágatha P. F. Lima
Cheng Chen
F. Rochinha
D. Mira
Xi Jiang
31
0
0
18 Oct 2021
PCNN: A physics-constrained neural network for multiphase flows
Haoyang Zheng
Ziyang Huang
Guang Lin
PINN
27
8
0
18 Sep 2021
Variational Physics Informed Neural Networks: the role of quadratures and test functions
S. Berrone
C. Canuto
Moreno Pintore
36
41
0
05 Sep 2021
Stochastic Physics-Informed Neural Ordinary Differential Equations
Jared O’Leary
J. Paulson
A. Mesbah
25
37
0
03 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
38
29
0
30 Aug 2021
Physics-Informed Deep Learning: A Promising Technique for System Reliability Assessment
Taotao Zhou
E. Droguett
A. Mosleh
AI4CE
11
25
0
24 Aug 2021
A Physics Informed Neural Network Approach to Solution and Identification of Biharmonic Equations of Elasticity
M. Vahab
E. Haghighat
M. Khaleghi
N. Khalili
PINN
39
44
0
16 Aug 2021
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors
Dhruv V. Patel
Deep Ray
Assad A. Oberai
AI4CE
19
37
0
06 Jul 2021
Interval and fuzzy physics-informed neural networks for uncertain fields
J. Fuhg
Ioannis Kalogeris
A. Fau
N. Bouklas
AI4CE
46
18
0
18 Jun 2021
Encoding physics to learn reaction-diffusion processes
Chengping Rao
Pu Ren
Qi Wang
O. Buyukozturk
Haoqin Sun
Yang Liu
PINN
AI4CE
DiffM
33
78
0
09 Jun 2021
PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics
Arka Daw
M. Maruf
Anuj Karpatne
AI4CE
10
42
0
06 Jun 2021
TNet: A Model-Constrained Tikhonov Network Approach for Inverse Problems
Hai V. Nguyen
T. Bui-Thanh
PINN
AI4CE
24
9
0
25 May 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
25
1,133
0
20 May 2021
Deep learning in physics: a study of dielectric quasi-cubic particles in a uniform electric field
Zhe Wang
C. Guet
19
5
0
11 May 2021
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
11
22
0
07 May 2021
Improved Surrogate Modeling of Fluid Dynamics with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
P. Chiu
M. Dao
PINN
AI4CE
32
4
0
05 May 2021
Adversarial Multi-task Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations
Pongpisit Thanasutives
M. Numao
Ken-ichi Fukui
AI4CE
30
24
0
29 Apr 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
223
0
26 Apr 2021
Generative Adversarial Network: Some Analytical Perspectives
Haoyang Cao
Xin Guo
GAN
38
2
0
25 Apr 2021
Explainable artificial intelligence for mechanics: physics-informing neural networks for constitutive models
A. Koeppe
F. Bamer
M. Selzer
B. Nestler
Bernd Markert
PINN
AI4CE
19
9
0
20 Apr 2021
The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
J. Fuhg
N. Bouklas
PINN
AI4CE
33
90
0
15 Apr 2021
A Physics-Informed Neural Network Framework For Partial Differential Equations on 3D Surfaces: Time-Dependent Problems
Z. Fang
J. Zhan
Xiu Yang
AI4CE
16
4
0
19 Mar 2021
dNNsolve: an efficient NN-based PDE solver
V. Guidetti
F. Muia
Y. Welling
A. Westphal
27
6
0
15 Mar 2021
Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data
Mohamed Aziz Bhouri
P. Perdikaris
28
20
0
04 Mar 2021
Measure-conditional Discriminator with Stationary Optimum for GANs and Statistical Distance Surrogates
Liu Yang
Tingwei Meng
George Karniadakis
25
1
0
17 Jan 2021
Physics-Informed Deep Learning for Traffic State Estimation
Rongye Shi
Zhaobin Mo
Kuang Huang
Xuan Di
Qi Du
AI4TS
11
0
0
17 Jan 2021
Bayesian neural networks for weak solution of PDEs with uncertainty quantification
Xiaoxuan Zhang
K. Garikipati
AI4CE
46
11
0
13 Jan 2021
Can Transfer Neuroevolution Tractably Solve Your Differential Equations?
Jian Cheng Wong
Abhishek Gupta
Yew-Soon Ong
28
21
0
06 Jan 2021
Previous
1
2
3
Next