ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04985
  4. Cited By
Generalized Ternary Connect: End-to-End Learning and Compression of
  Multiplication-Free Deep Neural Networks

Generalized Ternary Connect: End-to-End Learning and Compression of Multiplication-Free Deep Neural Networks

12 November 2018
Samyak Parajuli
Aswin Raghavan
S. Chai
ArXiv (abs)PDFHTML

Papers citing "Generalized Ternary Connect: End-to-End Learning and Compression of Multiplication-Free Deep Neural Networks"

5 / 5 papers shown
Real-time Hyper-Dimensional Reconfiguration at the Edge using Hardware
  Accelerators
Real-time Hyper-Dimensional Reconfiguration at the Edge using Hardware Accelerators
Indhumathi Kandaswamy
Saurabh Farkya
Z. Daniels
G. V. D. Wal
Aswin Raghavan
...
Jun Hu
M. Lomnitz
M. Isnardi
David C. Zhang
M. Piacentino
BDL
155
6
0
10 Jun 2022
Quantization-Guided Training for Compact TinyML Models
Quantization-Guided Training for Compact TinyML Models
Sedigh Ghamari
Koray Ozcan
Thu Dinh
A. Melnikov
Juan Carvajal
Jan Ernst
S. Chai
MQ
205
21
0
10 Mar 2021
Subtensor Quantization for Mobilenets
Subtensor Quantization for Mobilenets
Thu Dinh
A. Melnikov
Vasilios Daskalopoulos
S. Chai
MQ
177
4
0
04 Nov 2020
Bit Efficient Quantization for Deep Neural Networks
Bit Efficient Quantization for Deep Neural Networks
Prateeth Nayak
David C. Zhang
S. Chai
MQ
184
45
0
07 Oct 2019
Toward Runtime-Throttleable Neural Networks
Toward Runtime-Throttleable Neural Networks
Jesse Hostetler
101
2
0
30 May 2019
1
Page 1 of 1