Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.05537
Cited By
Data Driven Governing Equations Approximation Using Deep Neural Networks
13 November 2018
Tong Qin
Kailiang Wu
D. Xiu
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Driven Governing Equations Approximation Using Deep Neural Networks"
49 / 49 papers shown
Title
Physics-informed Multiple-Input Operators for efficient dynamic response prediction of structures
Bilal Ahmed
Yuqing Qiu
Diab W. Abueidda
Waleed El-Sekelly
Tarek Abdoun
M. Mobasher
AI4CE
34
0
0
11 May 2025
Identifying Unknown Stochastic Dynamics via Finite expression methods
Senwei Liang
Chunmei Wang
Xingjian Xu
25
0
0
09 Apr 2025
Optimized Dynamic Mode Decomposition for Reconstruction and Forecasting of Atmospheric Chemistry Data
Meghana Velegar
Christoph Keller
J. Nathan Kutz
28
1
0
13 Apr 2024
Hierarchical deep learning-based adaptive time-stepping scheme for multiscale simulations
Asif Hamid
Danish Rafiq
S. A. Nahvi
M. A. Bazaz
AI4CE
36
1
0
10 Nov 2023
Flow Map Learning for Unknown Dynamical Systems: Overview, Implementation, and Benchmarks
V. Churchill
D. Xiu
AI4CE
25
10
0
20 Jul 2023
On the Identifiablility of Nonlocal Interaction Kernels in First-Order Systems of Interacting Particles on Riemannian Manifolds
Sui Tang
Malik Tuerkoen
Hanming Zhou
29
4
0
21 May 2023
On the effectiveness of neural priors in modeling dynamical systems
Sameera Ramasinghe
Hemanth Saratchandran
Violetta Shevchenko
Simon Lucey
29
2
0
10 Mar 2023
Approaching epidemiological dynamics of COVID-19 with physics-informed neural networks
Shuai Han
Lukas Stelz
Horst Stoecker
L. Wang
Kai Zhou
AI4CE
PINN
28
9
0
17 Feb 2023
On Approximating the Dynamic Response of Synchronous Generators via Operator Learning: A Step Towards Building Deep Operator-based Power Grid Simulators
Christian Moya
Guang Lin
Tianqiao Zhao
Meng Yue
32
8
0
29 Jan 2023
SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics
Esha Saha
L. Ho
Giang Tran
36
5
0
11 Nov 2022
Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue
G. Tong
Daniele E. Schiavazzi
27
3
0
05 Jul 2022
Learning nonparametric ordinary differential equations from noisy data
Kamel Lahouel
Michael Wells
Victor Rielly
Ethan Lew
David M Lovitz
Bruno Michel Jedynak
26
4
0
30 Jun 2022
VPNets: Volume-preserving neural networks for learning source-free dynamics
Aiqing Zhu
Beibei Zhu
Jiawei Zhang
Yifa Tang
Jian-Dong Liu
28
3
0
29 Apr 2022
PARC: Physics-Aware Recurrent Convolutional Neural Networks to Assimilate Meso-scale Reactive Mechanics of Energetic Materials
Phong C. H. Nguyen
Y. Nguyen
Joseph B. Choi
P. Seshadri
H. Udaykumar
Stephen Seung-Yeob Baek
AI4CE
18
16
0
04 Apr 2022
Online Weak-form Sparse Identification of Partial Differential Equations
Daniel Messenger
E. Dall’Anese
David M. Bortz
41
13
0
08 Mar 2022
Robust Modeling of Unknown Dynamical Systems via Ensemble Averaged Learning
V. Churchill
Steve Manns
Zhen Chen
D. Xiu
AI4CE
29
9
0
07 Mar 2022
Physics-informed neural networks for solving parametric magnetostatic problems
Andrés Beltrán-Pulido
Ilias Bilionis
D. Aliprantis
24
34
0
08 Feb 2022
Modeling unknown dynamical systems with hidden parameters
Xiaohan Fu
Weize Mao
L. Chang
D. Xiu
16
5
0
03 Feb 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
28
93
0
02 Nov 2021
DeepParticle: learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
Zhongjian Wang
Jack Xin
Zhiwen Zhang
39
15
0
02 Nov 2021
DAE-PINN: A Physics-Informed Neural Network Model for Simulating Differential-Algebraic Equations with Application to Power Networks
Christian Moya
Guang Lin
AI4CE
PINN
56
37
0
09 Sep 2021
Physics-integrated hybrid framework for model form error identification in nonlinear dynamical systems
Shailesh Garg
S. Chakraborty
B. Hazra
46
20
0
01 Sep 2021
Adaptive Group Lasso Neural Network Models for Functions of Few Variables and Time-Dependent Data
L. Ho
Nicholas Richardson
Giang Tran
18
3
0
24 Aug 2021
Model-free inference of unseen attractors: Reconstructing phase space features from a single noisy trajectory using reservoir computing
André Röhm
D. Gauthier
Ingo Fischer
50
38
0
06 Aug 2021
Deep Neural Network Modeling of Unknown Partial Differential Equations in Nodal Space
Zhen Chen
V. Churchill
Kailiang Wu
D. Xiu
AI4CE
14
47
0
07 Jun 2021
Learning particle swarming models from data with Gaussian processes
Jinchao Feng
Charles Kulick
Yunxiang Ren
Sui Tang
26
5
0
04 Jun 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
222
0
26 Apr 2021
Model Order Reduction based on Runge-Kutta Neural Network
Qinyu Zhuang
Juan M Lorenzi
H. Bungartz
D. Hartmann
11
14
0
25 Mar 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
24
20
0
21 Mar 2021
Multi-objective discovery of PDE systems using evolutionary approach
M. Maslyaev
A. Hvatov
23
5
0
11 Mar 2021
Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data
Mohamed Aziz Bhouri
P. Perdikaris
20
20
0
04 Mar 2021
A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate
Hongwei Guo
X. Zhuang
Timon Rabczuk
AI4CE
19
433
0
04 Feb 2021
Deep learning prediction of patient response time course from early data via neural-pharmacokinetic/pharmacodynamic modeling
James Lu
B. Bender
Jin Y. Jin
Y. Guan
25
46
0
22 Oct 2020
Discovery of Governing Equations with Recursive Deep Neural Networks
Jia Zhao
Jarrod Mau
PINN
17
6
0
24 Sep 2020
Deep learning of free boundary and Stefan problems
Sifan Wang
P. Perdikaris
21
80
0
04 Jun 2020
Deep-learning of Parametric Partial Differential Equations from Sparse and Noisy Data
Hao Xu
Dongxiao Zhang
Junsheng Zeng
22
57
0
16 May 2020
RotEqNet: Rotation-Equivariant Network for Fluid Systems with Symmetric High-Order Tensors
Liyao (Mars) Gao
Yifan Du
Hongshan Li
Guang Lin
27
12
0
28 Apr 2020
Learning reduced systems via deep neural networks with memory
Xiaohang Fu
L. Chang
D. Xiu
11
32
0
20 Mar 2020
Methods to Recover Unknown Processes in Partial Differential Equations Using Data
Zhen Chen
Kailiang Wu
D. Xiu
19
3
0
05 Mar 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
89
288
0
03 Mar 2020
On generalized residue network for deep learning of unknown dynamical systems
Zhen Chen
D. Xiu
AI4CE
16
46
0
23 Jan 2020
DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm
Hao Xu
Haibin Chang
Dongxiao Zhang
AI4CE
20
87
0
21 Jan 2020
Discovery of Dynamics Using Linear Multistep Methods
Rachael Keller
Q. Du
25
36
0
29 Dec 2019
Data-Driven Deep Learning of Partial Differential Equations in Modal Space
Kailiang Wu
D. Xiu
9
149
0
15 Oct 2019
EM-like Learning Chaotic Dynamics from Noisy and Partial Observations
Duong Nguyen
Said Ouala
Lucas Drumetz
Ronan Fablet
13
29
0
25 Mar 2019
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
31
542
0
30 Nov 2018
Using Deep Learning to Extend the Range of Air-Pollution Monitoring and Forecasting
Philipp Haehnel
Jakub Mareˇcek
Julien Monteil
Fearghal O'Donncha
AI4CE
14
39
0
22 Oct 2018
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
M. A. Nabian
Hadi Meidani
PINN
AI4CE
19
57
0
11 Oct 2018
Representing smooth functions as compositions of near-identity functions with implications for deep network optimization
Peter L. Bartlett
S. Evans
Philip M. Long
71
31
0
13 Apr 2018
1