Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1811.06128
Cited By
v1
v2 (latest)
Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon
15 November 2018
Yoshua Bengio
Andrea Lodi
Antoine Prouvost
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon"
50 / 564 papers shown
Title
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem
Liang Xin
Wen Song
Zhiguang Cao
Jie Zhang
137
150
0
15 Oct 2021
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
GNN
503
415
0
15 Oct 2021
Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep Learning Method
AAAI Conference on Artificial Intelligence (AAAI), 2021
James Kotary
Ferdinando Fioretto
Pascal Van Hentenryck
156
23
0
12 Oct 2021
Graph Neural Network Guided Local Search for the Traveling Salesperson Problem
International Conference on Learning Representations (ICLR), 2021
Benjamin H. Hudson
Qingbiao Li
Matthew Malencia
Amanda Prorok
207
83
0
11 Oct 2021
Hybrid Pointer Networks for Traveling Salesman Problems Optimization
Ahmed Stohy
Heba-Tullah Abdelhakam
Sayed Ali
Mohammed Elhenawy
Abdallah A. Hassan
Mahmoud Masoud
Sébastien Glaser
A. Rakotonirainy
225
14
0
06 Oct 2021
A study of first-passage time minimization via Q-learning in heated gridworlds
M. A. Larchenko
Pavel Osinenko
Grigory Yaremenko
V. V. Palyulin
198
4
0
05 Oct 2021
Optimization with Constraint Learning: A Framework and Survey
Adejuyigbe O. Fajemisin
Donato Maragno
D. Hertog
206
62
0
05 Oct 2021
(Machine) Learning to Improve the Empirical Performance of Discrete Algorithms
Imran Adham
J. D. Loera
Zhenyang Zhang
105
4
0
29 Sep 2021
Guidelines for the Computational Testing of Machine Learning approaches to Vehicle Routing Problems
L. Accorsi
Andrea Lodi
D. Vigo
113
33
0
28 Sep 2021
Deep Policies for Online Bipartite Matching: A Reinforcement Learning Approach
Mohammad Ali Alomrani
Reza Moravej
Elias Boutros Khalil
OffRL
220
22
0
21 Sep 2021
A deep learning guided memetic framework for graph coloring problems
Olivier Goudet
Cyril Grelier
Jin‐Kao Hao
GNN
158
30
0
13 Sep 2021
Subgoal Search For Complex Reasoning Tasks
Neural Information Processing Systems (NeurIPS), 2021
K. Czechowski
Tomasz Odrzygó'zd'z
Marek Zbysiñski
Michał Zawalski
Krzysztof Olejnik
Yuhuai Wu
Lukasz Kuciñski
Piotr Milo's
ReLM
LRM
212
39
0
25 Aug 2021
A New Constructive Heuristic driven by Machine Learning for the Traveling Salesman Problem
U. Mele
L. Gambardella
R. Montemanni
70
16
0
17 Aug 2021
Machine Learning Constructives and Local Searches for the Travelling Salesman Problem
Tommaso Vitali
U. Mele
L. Gambardella
R. Montemanni
80
4
0
02 Aug 2021
Learned upper bounds for the Time-Dependent Travelling Salesman Problem
IEEE Access (IEEE Access), 2021
Tommaso Adamo
G. Ghiani
P. Greco
E. Guerriero
72
5
0
28 Jul 2021
Accelerating Quadratic Optimization with Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2021
Jeffrey Ichnowski
Paras Jain
Bartolomeo Stellato
G. Banjac
Michael Luo
Francesco Borrelli
Joseph E. Gonzalez
Ion Stoica
Ken Goldberg
OffRL
120
49
0
22 Jul 2021
Neural Fixed-Point Acceleration for Convex Optimization
Shobha Venkataraman
Brandon Amos
186
18
0
21 Jul 2021
Learning a Large Neighborhood Search Algorithm for Mixed Integer Programs
Nicolas Sonnerat
Pengming Wang
Ira Ktena
Sergey Bartunov
Vinod Nair
270
60
0
21 Jul 2021
CoCo: Online Mixed-Integer Control via Supervised Learning
IEEE Robotics and Automation Letters (RA-L), 2021
Abhishek Cauligi
Preston Culbertson
Edward Schmerling
Mac Schwager
Bartolomeo Stellato
Marco Pavone
163
48
0
16 Jul 2021
MODRL/D-EL: Multiobjective Deep Reinforcement Learning with Evolutionary Learning for Multiobjective Optimization
IEEE International Joint Conference on Neural Network (IJCNN), 2021
Yongxin Zhang
Jiahai Wang
Zizhen Zhang
Yalan Zhou
184
25
0
16 Jul 2021
USCO-Solver: Solving Undetermined Stochastic Combinatorial Optimization Problems
Neural Information Processing Systems (NeurIPS), 2021
G. Tong
211
6
0
15 Jul 2021
Learning structured approximations of combinatorial optimization problems
Axel Parmentier
TPM
229
4
0
09 Jul 2021
Reinforced Hybrid Genetic Algorithm for the Traveling Salesman Problem
Jiongzhi Zheng
Jialun Zhong
Menglei Chen
Kun He
161
17
0
09 Jul 2021
Deep Learning for Two-Sided Matching
S. Ravindranath
Zhe Feng
Shira Li
Jonathan Ma
S. Kominers
David C. Parkes
247
24
0
07 Jul 2021
Maximum Entropy Weighted Independent Set Pooling for Graph Neural Networks
Amirhossein Nouranizadeh
Mohammadjavad Matinkia
Mohammad Rahmati
Reza Safabakhsh
156
24
0
03 Jul 2021
Towards Utilitarian Combinatorial Assignment with Deep Neural Networks and Heuristic Algorithms
International Workshop on Trustworthy AI - Integrating Learning, Optimization and Reasoning (TAILOR), 2021
Fredrik Präntare
Mattias Tiger
David Bergstrom
Herman Appelgren
Fredrik Heintz
39
0
0
01 Jul 2021
Matrix Encoding Networks for Neural Combinatorial Optimization
Neural Information Processing Systems (NeurIPS), 2021
Yeong-Dae Kwon
Jinho Choo
Iljoo Yoon
Minah Park
Duwon Park
Youngjune Gwon
229
126
0
21 Jun 2021
Goal-Aware Neural SAT Solver
IEEE International Joint Conference on Neural Network (IJCNN), 2021
Emīls Ozoliņš
Kārlis Freivalds
Andis Draguns
Eliza Gaile
Ronalds Zakovskis
Sergejs Kozlovics
NAI
AAML
118
32
0
14 Jun 2021
Contingency-Aware Influence Maximization: A Reinforcement Learning Approach
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
Haipeng Chen
Wei Qiu
H. Ou
Bo An
Milind Tambe
100
23
0
13 Jun 2021
Planning Spatial Networks with Monte Carlo Tree Search
Proceedings of the Royal Society A (Proc. R. Soc. A), 2021
Victor-Alexandru Darvariu
Stephen Hailes
Mirco Musolesi
194
9
0
12 Jun 2021
Solving Graph-based Public Good Games with Tree Search and Imitation Learning
Victor-Alexandru Darvariu
Stephen Hailes
Mirco Musolesi
93
1
0
12 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Neural Information Processing Systems (NeurIPS), 2021
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
289
149
0
11 Jun 2021
A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs
Neural Information Processing Systems (NeurIPS), 2021
Runzhong Wang
Zhigang Hua
Gan Liu
Jiayi Zhang
Junchi Yan
Feng Qi
Shuang Yang
Jun Zhou
Xiaokang Yang
150
51
0
09 Jun 2021
Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
Neural Information Processing Systems (NeurIPS), 2021
Maria-Florina Balcan
Siddharth Prasad
Tuomas Sandholm
Ellen Vitercik
143
45
0
08 Jun 2021
Learning Hard Optimization Problems: A Data Generation Perspective
Neural Information Processing Systems (NeurIPS), 2021
James Kotary
Ferdinando Fioretto
Pascal Van Hentenryck
93
42
0
04 Jun 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Neural Information Processing Systems (NeurIPS), 2021
Mathias Niepert
Pasquale Minervini
Luca Franceschi
252
105
0
03 Jun 2021
Experiments with graph convolutional networks for solving the vertex
p
p
p
-center problem
Elisabeth Gaar
Markus Sinnl
GNN
62
0
0
01 Jun 2021
Towards Lower Bounds on the Depth of ReLU Neural Networks
Neural Information Processing Systems (NeurIPS), 2021
Christoph Hertrich
A. Basu
M. D. Summa
M. Skutella
414
53
0
31 May 2021
Learning to Select Cuts for Efficient Mixed-Integer Programming
Pattern Recognition (Pattern Recogn.), 2021
Zeren Huang
Kerong Wang
Furui Liu
Hui-Ling Zhen
Weinan Zhang
Mingxuan Yuan
Jianye Hao
Yong Yu
Jun Wang
223
81
0
28 May 2021
Structured Convolutional Kernel Networks for Airline Crew Scheduling
International Conference on Machine Learning (ICML), 2021
Yassine Yaakoubi
F. Soumis
Damien Scieur
AI4TS
230
10
0
25 May 2021
A review of approaches to modeling applied vehicle routing problems
Konstantin Sidorov
Alexander Morozov
73
1
0
23 May 2021
How to effectively use machine learning models to predict the solutions for optimization problems: lessons from loss function
M. Abolghasemi
B. Abbasi
Toktam Babaei
S. Z. Hosseinifard
AI4CE
86
10
0
14 May 2021
Solve routing problems with a residual edge-graph attention neural network
Kun Lei
Peng Guo
Yi Wang
Xiao Wu
Wenchao Zhao
162
73
0
06 May 2021
Learning Algorithms for Regenerative Stopping Problems with Applications to Shipping Consolidation in Logistics
Kishor Jothimurugan
M. Andrews
Jeongran Lee
Lorenzo Maggi
38
0
0
05 May 2021
Forming Ensembles at Runtime: A Machine Learning Approach
Leveraging Applications of Formal Methods (ISoLA), 2021
T. Bures
I. Gerostathopoulos
P. Hnetynka
J. Pacovský
31
6
0
30 Apr 2021
Constructions in combinatorics via neural networks
Adam Zsolt Wagner
BDL
234
60
0
29 Apr 2021
DC3: A learning method for optimization with hard constraints
International Conference on Learning Representations (ICLR), 2021
P. Donti
David Rolnick
J. Zico Kolter
AI4CE
142
233
0
25 Apr 2021
AutoGL: A Library for Automated Graph Learning
Ziwei Zhang
Yijian Qin
Zeyang Zhang
Chaoyu Guan
Jie Cai
...
Beini Xie
Yang Yao
Yipeng Zhang
Xin Eric Wang
Wenwu Zhu
285
31
0
11 Apr 2021
A Reinforcement Learning Environment For Job-Shop Scheduling
Pierre Tassel
Martin Gebser
Konstantin Schekotihin
OffRL
122
61
0
08 Apr 2021
Ecole: A Library for Learning Inside MILP Solvers
Antoine Prouvost
Justin Dumouchelle
Maxime Gasse
Didier Chételat
Andrea Lodi
88
4
0
06 Apr 2021
Previous
1
2
3
...
10
11
12
8
9
Next